UNIVERSITA ‘
DEGLI STUDI —) DIPARTIMENTO
DI PADOVA = D| INGEGNERIA

— DELL'INFORMAZIONE

MASTER THESIS IN
CoMPUTER ENGINEERING - Al & RoBoTICS

A FOUNDATION MODEL FOR
ROBOTIC MANIPULATION: GAM,
GRASP-ANYTHING-MODEL

MASTER CANDIDATE SUPERVISOR
Matteo Villani Prof. Emanuele Menegatti
Student ID 2090299 University of Padova

CO-SUPERVISOR

Dott. Alberto Bacchin

University of Padova

AcADEMIC YEAR
2024/2025

“If you can’t take risks you can’t make a future!”
- Monkey D. Rufy

Abstract

This thesis introduces the Grasp-Anything Model (GAM), amodular, interpretable,
and ROS2-native grasping pipeline designed to enable zero-shot manipulation
of arbitrary objects in unstructured environments. Built for the Tiago family of
service robots developed by PAL Robotics, GAM integrates prompt-grounded
perception, single-view 3D reconstruction, grasp pose generation, and task-aware
motion planning into a unified framework. Unlike monolithic or dataset-bound
systems, GAM embraces decoupled service-oriented modules—including Grounded-
Segment-Anything (GSAM), Multiview Compressive Coding (MCC), and Movelt Task
Constructor (MTC)—to ensure component reusability, architectural transparency,
and diagnostic granularity.

The system is evaluated across both simulated and real-world settings using a
representative set of objects varying in geometry, size, and occlusion. Empirical
results demonstrate GAM’s ability to generalize grasp strategies without object-
specific retraining, achieve stable motion execution in partially observed scenes,
and operate under CPU-only constraints with total runtime under one minute
per grasp. Planning latency is significantly reduced via MTC'’s structured action
pipeline, while grasp success rates exceeded 70% on average across diverse ob-
ject categories. Nonetheless, limitations in sensor quality, segmentation under
ambiguity, and grasp planning near constrained surfaces highlight opportuni-

ties for further optimization.

By prioritizing modularity over end-to-end speed, this work contributes a
foundational manipulation framework suitable for deployment, extension, and
research in real-world robotic systems. GAM is not presented as a final grasp-
ing solution, but as a robust platform upon which future advances in data-driven

manipulation, adaptive behaviour logic, and system-level autonomy can be built.

List of Figures

List of Tables

List of Code Snippets
List of Acronyms

1 Introduction

1.1 Background
12 Context
1.3 Purposes and Objectives
1.4 Significance, Scope and Definitions
1.5 ThesisOutline

2 Literature Review

2.1 Historical Background

2.2 Perception for Robotic Grasping

22.1 End-to-end Vision Language Model (RT-2)
2.2.2 Segment-Anything-Model
223 YOLOe
224 Grounded-Segment-Anything

2.3 3D Scene Representation
231 Point-NeRF
23.2 PointInfinity o0
233 DeepSDF
234 MCC

2.4 Grasping Pose Detection

Vil

Contents

xi
xiii
xvii

xix

CONTENTS

241 GraspitLikeaPro2.0
242 Contact-GraspNet
243 AnyGrasp e
244 GPD
2.5 Trajectory Planning & Control
251 Movelt2&MTC oo
2.5.2 Motion Planning Algorithms
2.6 Limitations of ExistingWork

Research Design and Implementation
3.1 System Architecture & Control Strategy
3.1.1 Research Desgin and Evaluation Strategy
3.1.2 Experimental Instruments and Logging
3.1.3 BT Execution and ROS2 Service Coordination
32 Perception o oo
3.2.1 Perception Module Implementation
33 3DReconstruction. 00000
3.3.1 3D Reconstruction Module Implementation.
3.4 Grasping Pose Detection
3.41 Grasping Pose Detection Module Implementation
3.5 Planning Scene Handler
3.5.1 Planning Scene Hnalder Implementation
3.6 Motion Planning & Execution
3.6.1 Trajectory Planning & Grasp Execution Implementation

3.7 Summary and Experimental Outlook

Results

41 ExperimentalSetup

4.2 Evaluation Metrics & Success Criteria

43 Results e
431 GraspSuccessRate
43.2 Pipeline Runtime Breakdown

44 Limitations L L

45 SummaryofFindings.

viii

CONTENTS

5 Conclusions 89
51 OVerview e e e e e e, 89
5.2 Future Work 89
53 FinalRemarks 91

References 93

Acknowledgments 99

iX

1.1
1.2

1.3

2.1

2.2

3.1

3.2
3.3

34
3.5
3.6
3.7

3.8

List of Figures

TiagoFamily, 3
High-level architecture of the Grasp-Anything-Model (GAM): how
the Behaviour Tree (BT) is structured. 5

Example of RGB-D sensor data. The POV frame displays what
Tiago sees, above it the depth points (D), aligned with the RGB,
areplottedinRViz. 8

Key milestones in the evolution of robotic grasping systems over
time. 13

Main MTC Stages [47]. L. 32

ROS2 - BT interaction. The Action Client sendstheAction goal,
specifying the object to grasp, to the Action Server, which starts
totickthe BT in Sequence. 39
BT Nodes implementation as ROS2 service servers. 40
Perception Pipeline: The robot RGB point of view (POV) and the
object_type are fed to Grounding-DINO, whici will produce the
bounding box with the confidence score that serves as input for

SAM, that produces the binarymask.. 47
Grounded-SAM stages. L. 49
Seenpointcloud. L o L, 51
3D Reconstructed mug, output examples. 52

3D Reconstructed shape of a mug. Output of MCC having in input
the binary mask, the RGB image aligned with the mask, and the
seen point cloud (as depicted in Fig.3.5). 53

GPD output on a reconstructed cylinder pointcloud. 56

xi

LIST OF FIGURES

3.9 RVizrepresentation of a grasp and Tiago aiming to reach the pre-
dicted pose with its end-effector. The orange arm resembles the
actual position in the simulation, while the arm performing the
grasp is the MTC plan visualization.

3.10 Predicted grasp poses with improved GPD’s input cloud.

3.11 Object mesh, generated from a mug reconstructed point cloud
(black points).

3.12 Meshes output on a cylinder object.

3.13 Planning Sceneupdate. oL

3.14 MTC’s output of pre-grasp Task in case of grasping a bowl.

3.15 MTC'’s output of post-grasp Task in case of grasping a bowl.

4.1 Experiments environments.
42 Simulation Grasp SuccessRates.
43 Real-world Grasp SuccessRates.

xiii

59
60

61
63
64
68
70

76

21
2.2
2.3

3.1

4.1

List of Tables

Comparison of Perception approaches. 19
Comparison of 3D reconstruction models. 25
Comparison of grasp pose detection methods. 30
Overview of modules used in the grasping pipeline. 72
Pipeline Runtime Breakdown on CPUand GPU 83

XVil

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

List of Code Snippets

send_goal function implementation 43
Storing object_type on the Blackboard 43
Tickingofthe BT 44
Registrationof BT nodes 45
Enabling the BT to be globally accessible 45
Creating the BT from XML definitions 45
Assuring consistent pointclouds 000 49
Scaling and centroid factors’ computation 54
Initialization of the Grasp Detector server 57
Grasp detectionline. Lo oL 58
Detected grasps validation 58
Poisson Reconstruction implementation 63
Planning Scene update flow 64
MTC creating a Task and publishing a Solution 70

Xix

GAM Grasp Anything Model

GPD Grasp Pose Detection

SAM Segment Anything Model (v1)
GSAM Grounded SAM

MCC Multiview Compressive Coding
YOLOe You Only Look Once Everything
MVBB Minimum Volume Bounding Box
MVS Multi View Stereo

NeRF Neural Radiance Fields

SDF Signed Distance Functions

RGB-D RGB-depth camera sensor

PCL Point Cloud Library

LLM Large Language Model

ROS Robotic Operating System

MTC Movelt Task Constructor

BT Behavior Tree

IK Inverse Kinematics

DoF Degree of Freedom

xx1

List of Acronyms

LIST OF ACRONYMS

CoM Center of Mass

PoV Point of View

AP Average Precision

mAP mean Average Precision
PSNR Peak signal-to-noise ratio
GUI Graphical User Interface
SoTA state-of-the-art

RQ Research Question

DNNs Deep Neural Networks

xxii

Introduction

Grasping arbitrary objects in dynamic, unstructured environments remains a
fundamental challenge in service robotics, particularly when deployed on plat-
forms with limited computational resources. Existing approaches often assume
powerful GPU hardware [6] [40], rely on fixed object datasets [9] [39], or fail
under sensor noise and occlusion [70]. This thesis addresses these limitations
by introducing the Grasp-Anything Model (GAM), a lightweight, modular,
and CPU-feasible grasping pipeline tailored to the Tiago robot family developed
at PAL Robotics. GAM integrates prompt-driven perception, single-view 3D
reconstruction, 6-Degrees-of-Freedon (DoF') grasp synthesis, and task-aware
motion planning into a unified ROS2 architecture. Unlike monolithic or data-
hungry pipelines [40], GAM is designed to generalize to novel objects, maintain
real-time responsiveness, and operate under real-world deployment constraints.

BACKGROUND

Robotic grasping remains one of the most complex and actively researched
challenges in autonomous manipulation. From warehouse automation to assis-

tive robotics, the ability to identify, reconstruct, and manipulate everyday ob-

!Degrees-of-Freedom define the number of independent movements or parameters re-
quired to fully describe a system’s configuration. In robotics, 6-DoF refers to an object’s ability
to move freely in 3D space: three translational (x, y, z axes) and three rotational (roll, pitch, yaw)
movements. For example, a 6-DoF robotic gripper can position and orient itself arbitrarily to
grasp objects.

1.1. BACKGROUND

jects in unstructured environments is essential for the deployment of robots in
the real world. Historically, grasping systems often rely on hand-crafted heuris-
tics and analytical models [34], or extensive prior knowledge of object geome-
tries (e.g. detailed CAD-like object models) to compute stable grasps [9] [70].
These approaches, while effective in constrained environments, often failed to
generalize beyond pre-modeled or geometrically simple objects.

In recent years, the availability of RGB-D sensors and advances in deep learn-
ing have led to the rise of data-driven and vision-based grasping pipelines. These
pipelines typically integrate modules for object detection, 3D reconstruction,
and grasp synthesis, using large datasets to learn grasp affordances [9] [39].
However, while is powerful under ideal conditions, these approaches often
lack modular fault tolerance, transparency, and reusability. Many of these sys-
tems assume access to high-end GPU resources, require fixed training datasets,
or fail to account for occlusions, lighting variation, and sensor noise — all of

which degrade performance in real-world scenarios [70] [9].

This research is carried out in the dynamic and innovative environment of
PAL Robotics, in Barcelona, during my internship. PAL Robotics is a leader in
the development of mobile and service manipulators, with a strong focus on
real-world applications. It is a company comprising over 150 members, coming
from more than 25 nationalities: with more than 20 years of expertise in develop-
ing service robots to enhance people’s quality of life in numerous scenarios like
healthcare, university, research, industries, retail, etc... The target sectors of the
robots that are being produced at PAL range from Mobile Interaction, where
we can find robots like ARI and Tiago family (e.g. Tiago, Tiago++, Tiago-Pro):
that are mainly products and services for industries and research; Legged, that
involves robots like Reem-C, Kangaroo and Talos, developed for state-of-the-art
humanoid research; to Intralogistics systems that automate the transportation
of goods and perform inventory tracking.

This work focuses mainly on the manipulator robots: in particular, on Tiago,
Tiago++ and Tiago-Pro, presented in Fig. 1.1. All platforms are equipped with
RGB-D Orbbec Astra camera [43], either one or two 7-DoF arms with an inter-
changeable end-effector including parallel-jaw gripper, 2F-140, 2F-85 and ePick.
In this setting the Tiago robots serve as a practical platform for testing and vali-

CHAPTER 1. INTRODUCTION

dating advanced grasping techniques.

(b) Tiago Dual (Tiago++) (c) Tiago-Pro

Figure 1.1: Tiago Family

This thesis builds upon that modular perspective by integrating state-of-the-
art perception and planning components into a flexible, interpretable, general-
izable, and resource-aware grasping system. The design targets manipulation
platforms, that operate under computational and sensory constraints, with the
goal of enabling real-world object grasping through grounded, prompt-driven

interaction, improving the grasping capabilities of the Tiago robots.

CONTEXT

My work on the Grasp-Anything Model (GAM) is deeply rooted in the chal-
lenges encountered in industrial automation and service robotics manipulation.
At PAL Robotics, the objective is not only to achieve high-fidelity reconstruc-
tions but also to ensure that the system operates in real time— delivering robust
performance even under noisy sensor conditions and in cluttered environments.
The research aims to integrate state-of-the-art perception modules, efficient 3D
reconstruction methods, grasp pose generation algorithms and collision-free tra-
jectory planning & execution into a unified pipeline. This modular approach en-
sures that each component can be optimized independently while contributing
to an overall system capable of generalizing to a wide variety of objects” shapes

and dimensions.

1.3. PURPOSES AND OBJECTIVES

While prior ROS1-based implementations were restricted to predefined ob-
ject geometries due to middleware limitations, the migration to ROS2—a tech-
nical imperative for this work—provides the architectural foundation necessary
to generalize across diverse object shapes and dimensions. By leveraging ROS2’s
enhanced real-time communication, distributed computing, and modular ser-
vice orchestration, GAM addresses the scalability demands of industrial and

service robotics, ensuring reliable operation in cluttered, dynamic environment.

By addressing the practical challenges of detection, localization, reconstruc-
tion, and real-time processing, this research seeks to bridge the gap between the
existing traditional grasping methods and generalized object grasping strate-
gies. The ultimate goal is to improve the grasping capabilities of Tiago robots
(Fig. 1.1), enabling them to handle grasps reliably and efficiently in everyday

environments optimized for unseen objects.

PURPOSES AND OBJECTIVES

The primary aim of this research is to develop a robust, lightweight, and effi-
cient grasping pipeline to enhance the manipulation capabilities of Tiago robots.
GAM is designed to overcome practical deployment constraints by prioritizing
modularity, CPU feasibility, and zero-shot generalization, in contrast to exist-
ing approaches that rely on GPU hardware, fixed object datasets, or rigid inte-
gration [6, 9].

To this end, the research addresses core challenges identified in the back-
ground: operating under sensor uncertainty, handling arbitrary object geome-
tries, and enabling end-to-end autonomy without relying on task-specific train-
ing. The specific technical and methodological objectives are as follows:

* Perception Module: Develop a perception pipeline that leverages advanced
detection and segmentation techniques to reliably detect and segment the
desired object/s from cluttered scenes. This module addresses the limi-
tations of prior pipelines that struggle with visual occlusion and require
dataset-specific object classes.

¢ 3D Reconstruction: Implement a single-view 3D reconstruction strategy
robust to noisy RGB-D inputs. Unlike traditional systems that rely on full
object models or multi-view input, GAM’s reconstruction module must
infer occluded geometry using only partial views, compensating for hard-
ware limitations.

CHAPTER 1. INTRODUCTION

* Grasping Pose Detection: Integrate a 6-DoF grasp pose prediction mod-
ule that computes stable, feasible grasp candidates based on the recon-
structed shape and robot constraints. This component moves beyond heuris-
tic or CAD-based approaches by leveraging data-driven inference that gen-
eralizes across object geometries.

* Trajectory Planning and Execution: Develop a task-aware motion plan-
ning module that selects high-quality grasp poses and executes a collision-
free trajectory, leveraging Movelt Task Constructor (MTC) for modularity
and robustness. This aims to replace the sequential, monolithic action
chains common in earlier systems.

* Execution and validation: Rigorously evaluate the pipeline under vari-
ous conditions: object variability, occlusion, sensor misalignment, to demon-
strate generalization and fault tolerance. This objective reinforces the prac-
tical value of the system and reflects its real-world integration at PAL Robotics.

Together, these objectives form a tightly connected response to the limita-
tions described in the background. GAM is modular where other systems are
monolithic, zero-shot where others are data set-bound and hardware-efficient
where others assume computational abundance. The result, as evidenced by
the high-level architecture of GAM in Fig.1.2, is a practical grasping framework

tailored for modern robotic platforms operating under real-world constraints.

Root

A4

Sequence

3D
Reconstruction

Grasp pose
Generation

Perception Plan Trajectory

Figure 1.2: High-level architecture of the Grasp-Anything-Model (GAM): how
the Behaviour Tree (BT) is structured.

1.4. SIGNIFICANCE, SCOPE AND DEFINITIONS

SIGNIFICANCE, SCOPE AND DEFINITIONS

The Grasp-Anything Model (GAM) directly assesses two critical limitations
in current grasping systems, notably in three key areas:

* Precision vs Speed trade off: High-fidelity reconstruction methods often
rely on resource-intensive computation, impeding real-time applicability.
In contrast, fast pipelines may sacrifice geometric accuracy. GAM bridges
this gap by integrating components that maintain reconstruction fidelity
while remaining compatible with CPU-only deployment—achieving a prac-
tical balance between speed and precision.

* Scalability and Generalization: Many existing systems are overfitted to
specific object types or constrained lab settings. By leveraging prompt-
driven grounding, zero-shot vision modules, and model-agnostic grasp
detection, GAM can generalize to objects with varying sizes, textures, and
configurations—ranging between 0.1 and 30 cm. This enhances adaptabil-
ity across tasks, reducing the need for retraining or dataset-specific tuning.

* Robot Agnosticism: Conventional pipelines are often tailored to a sin-
gle robot configuration or end-effector type. GAM is explicitly designed
for cross-platform deployment within the Tiago family (Tiago, Tiago++,
Tiago-Pro). Its modular design ensures that the same pipeline components
can be reused and adapted across different robot embodiments with min-
imal reconfiguration.

This study deliberately focuses grasping single objects in controlled, table-
top environments, with varying object types and spatial configurations (Figures
1.3-3.4a-4.1a). While real-world variability is included in the testing (e.g., sensor
noise, occlusions, lighting), the primary objective is to validate an integrated
grasping pipeline—from perception to execution—under manageable condi-
tions. The system is evaluated across a representative range of objects, and
prompts but does not address multi-object grasping or cluttered bin-picking sce-
narios, dynamic interaction with moving targets, post-grasp manipulation tasks
such as handovers or object use. While these challenges are critical, they fall out-

side the current scope and represent natural extensions for future research.

Building on the objectives defined in Section 1.3, the following functional com-

ponents represents the research focus:

¢ Perception: Integrating State-of-the-Art (S0T'A) segmentation and ground-
ing techniques to extract object masks from RGB-D data with minimal su-
pervision.

CHAPTER 1. INTRODUCTION

* 3D Reconstruction: Estimating full object geometry from partial depth
views, enabling the system to infer occluded surfaces from a single obser-
vation.

* Grasp Pose Detection: Generating feasible, 6-DoF grasp candidates that
respect the spatial constraints of the object, gripper, and surrounding sur-
faces.

* Motion Planning & Execution: Computing and executing safe, collision-
free trajectories based on the predicted grasp poses, leveraging structured
task planning.

* RobotIntegration: Deploying and validating the entire system across Tiago
platforms.

These components collectively define the system’s operational boundaries
and functional goals, while ensuring modularity and extensibility for future en-
hancements. To ensure clarity and consistency throughout this thesis, the fol-

lowing key terms are defined:

* ROS2 A middleware framework for robotic systems that provides tools,
libraries, and communication protocols to distributed, real-time applica-
tions. Unlike ROS1, ROS2 uses Data Distribution Service (DDS) protocol for
reliable, low-latency communication, enabling deterministic performance
in dynamic environments. It supports microservices architecture, allow-
ing components (nodes) to be developed and tested independently.

* Movelt2: The state-of-the-art motion planning framework for ROS2, de-
signed to simplify complex manipulation tasks. Movelt 2 extends the ca-
pabilities of Movelt 1 by leveraging ROS2’s improved middleware offer-
ing collision-aware motion planning, taking advantage of algorithms like
OMPL (Open Motion Planning Library) for trajectory optimization; real-
time adaptability: supports dynamic reconfiguration of planning parame-
ters during execution. In this research, Movelt 2 is used to generate collision-
free trajectories for the Tiago’s manipulator, ensuring safe and efficient
grasp execution.

* RGB-D Image: Fig.1.3 illustrates a digital image that contains both stan-
dard colour information (RGB), visible in the frame titled POV, and depth
information (D), the points plotted behind the frame. RGBD cameras can
do a pixel-to-pixel merging of RGB data and depth information to deliver
both in a single frame, typically captured using a structured light or time-
of-flight depth sensor. RGB-D images are critical for scene understanding
and 3D reconstruction in robotic perception.

* Point Cloud: A discrete set of data points representing the surface geome-
try of an object or scene in three-dimensional space. Each point is typically
defined by spatial coordinates (X, Y, Z) and may also contain additional at-
tributes such as RGB colour values or surface normals.

1.5. THESIS OUTLINE

Figure 1.3: Example of RGB-D sensor data. The POV frame displays what Tiago
sees, above it the depth points (D), aligned with the RGB, are plotted in RViz.

¢ Diffusion Model: A generative approach that learns to model complex
data distributions by reversing a gradual noise perturbation process. In the
context of this study, diffusion models can be used for refining 3D shape
reconstruction and improving grasp prediction.

¢ Grasping Pose: Defines the 6 DF pose for which the end-effector consider
as a target pose to plan, execute the trajectory in order to grasp the object.

This section establishes the fundamental scope and conceptual framework
for the research, ensuring a clear understanding of its objectives, constraints,

and technical foundations.

THEesIs OUTLINE

The remainder of this thesis is organized into several chapters that detail the
evolution of the research, from literature review and methodology to experi-

mental evaluation and conclusions:

¢ Chapter 2: Literature Review: Reviews the state-of-the-art in robotic grasp-
ing, 3D reconstruction, and diffusion-based models. It discusses the ad-
vantages and limitations of methods such as MCC [63], PointInfinity [21],
and Grasp-Pose-Detection (GPD) [46], and highlights gaps in the current re-
search.

¢ Chapter 3: Research Design and Implementation: Describes the design
and implementation of the proposed grasping pipeline. This chapter de-

CHAPTER 1. INTRODUCTION

tails the components of the system—from perception to grasping execution—
and explains the rationale behind key design decisions.

Chapter 4: Results: Outlines the experimental framework, including dif-
ferent environments, evaluation metrics, and system configurations. Re-
sults are presented, comparing the performance of the proposed pipeline
with state-of-the-art approaches under various conditions. Analyses the
experimental results, discusses the strengths and limitations of the ap-
proach, and explores potential improvements. This chapter also reflects
on the trade-offs between accuracy, speed, and robustness observed dur-
ing testing.

Chapter 5: Conclusion and Future Work: Summarizes the contributions
of the research, discusses its impact on the field of robotic grasping, and
proposes directions for future research to further enhance the system’s ca-
pabilities.

Literature Review

Robotic grasping is one of the fundamental challenges in robotic manipula-
tion, playing a crucial role in industrial automation, service robotics and assis-
tive technologies. Achieving robust, adaptive, and efficient grasping remains
a non-trivial problem due to the object variability, environmental clutter and
sensor noise. Over the past decades, extensive research has focused on percep-
tion 3D scene representation, grasp pose detection, and execution strategies

to enhance robotic grasping capabilities.

This chapter reviews the state-of-the-art approaches and methodologies across
each of these components, analysing design principles, performance trade-offs,
and implementation challenges with a focus on how they inform the RQs (Re-
search Questions) posed:

* RQ1: To what extent can prompt-driven perception generalize to real-world object
identification without high-performance computing hardware?

e RQ2: How can hybrid grasp synthesis algorithms balance precision and compu-
tational cost for effective manipulation in unstructured environments?

* RQ3: How can modular motion planning architectures (e.g., MTC, section 2.5.1)
improve responsiveness and task completion in dynamic environments like those
Tiago operates in?

These questions emerge from observed gaps in the literature regarding the
deployment of integrated robotic grasping systems under real-world constraints.
They serve as the basis and task for the proposed Grasp-Anything-Model (GAM)
pipeline discussed in the following chapter.

11

2.1. HISTORICAL BACKGROUND

The structure of this chapter is as follows:

¢ Section 2.1: Historical Background — Brief overview of the historical pro-
gression during the decades of the Robotic Grasping.

* Section 2.2: Perception for Robotic Grasping — Sensor technologies and
segmentation techniques essential for detecting graspable objects.

* Section 2.3: 3D Scene Representation — Point clouds, voxels, and analyti-
cal vs. data-driven approaches for modelling object geometry.

* Section 2.4: Grasp Pose Detection — Methods for generating stable 6-DoF
grasping configurations.

¢ Section 2.5: Motion Planning & Execution — Trajectory optimization tech-
niques and real-time robot control architectures.

* Section 2.6: Limitations and Research Gaps — Identifies gaps in the liter-
ature and how this research addresses them.

By synthesizing these areas, this chapter establishes a conceptual framework
for the proposed grasping pipeline, emphasizing trade-offs between speed, pre-

cision, and generalization in existing methods.

HisTORICAL BACKGROUND

Robotic grasping has evolved considerably over the past five decades, transi-
tioning from rigid, rule-based strategies in the 1970s and 1980s to the modular,
data-driven pipelines of the 2000s. Early research focused on analytical mod-
els grounded in physics and geometry. Classical methods such as force-closure
analysis [41] and grasp quality metrics [16] offered mathematically grounded
criteria for evaluating grasp stability. While effective in structured environ-
ments with known object geometries, these approaches struggled to scale to un-

structured, dynamic settings.

The early 2000 marked a major shift with the advent of RGB-D cameras which
revolutionized robotic grasping by enabling real-time perception of depth and
colour. Research began integrating machine learning models to detect gras-
pable regions directly from visual inputs, moving beyond pure geometry-based
heuristics [55]. However, these early learning-based approaches suffered from
two critical limitations: reliance on curated datasets and poor generalization to

novel objects.

12

CHAPTER 2. LITERATURE REVIEW

A crucial milestone came with the release of the Robotic-Operating-System
(ROS) in 2007-2008, which laid the groundwork for modular robotic architec-
tures. Tools like Movelt! (introduced in 2014) further standardized motion plan-
ning and integration across different hardware platforms. This modularity be-
came increasingly important as robotic systems began incorporating diverse com-

ponents such as perception, planning, and control.

Early 1990s

CAD-based 2006 2014 2020 S5
. ROS Movelt! Diffusion Models
planning GAM
‘ | | o C | | | | N
I ‘ I ‘ I ‘ I ‘ I
1970-1980s 2005 2010 2016-2019 2023-2024
Analytical RGB-D Learning-based Deep Learning Zero-shot
Grasp Models sensing Grasp Detection Grasping

Figure 2.1: Key milestones in the evolution of robotic grasping systems over
time.

With the advent of Dense Neural Networks (DNNs) and reinforcement learn-
ing (RL), data-driven grasp planning saw significant improvements. Dex-Net
[34] introduced a synthetic grasp dataset with millions of simulated grasp at-
tempts, improving grasp prediction accuracy. Meanwhile, GraspNet-1Billion [14]
expanded large-scale grasp datasets, enabling 6-DoF grasp planning using DNN
models like GraspNet [15] and Contact-GraspNet [61].

Recent trends emphasize modular grasping pipelines that integrate:

* Perception modules (e.g., YOLOe, SAM) for task-aware instance segmen-
tation.

* 3D Reconstruction methods (e.g., MCC) for spatial awareness.

* Hybrid learning-based grasp synthesis, balancing adaptability and effi-
ciency.

* Motion planning frameworks (e.g., MTC) for sequential action planning.

Despite advancements in modular pipelines, a critical trade-off persists be-
tween computational complexity and real-time performance. Many deep learning-

based methods require significant computational power (e.g. GPUs), making

13

2.2. PERCEPTION FOR ROBOTIC GRASPING

them impractical for embedded robotic systems. Consequently, hybrid approaches
combining physics-based models with data-driven approaches are emerging as

a viable solution [25]. While hybrid approaches [25] address computational bot-
tlenecks, they lack modularity—a gap addressed by GAM’s ROS2-based pipeline.

The evolution of robotic grasping demonstrates a shift from analytical models
to adaptive, learning-based pipelines. Despite major advancements, key chal-
lenges remain, including handling occlusions, improving real-time efficiency,
and enabling grasp generalization to novel objects. We first survey image-based
perception (Section 2.2), then 3D scene reconstruction (Section 2.3), grasp syn-
thesis (Section 2.4), how the Planning Scene (Section 2.5) is handled and finally
motion planning (Section 2.6). Each section concludes by tying findings to the
core research questions (RQs), laying the foundation for the system architecture

proposed in Chapter 3.

PERCEPTION FOR ROBOTIC GRASPING

Perception forms the foundation of robotic interaction with the environment,
enabling a robot to understand, interpret and respond to its surroundings. In
the context of service robots (e.g., the Tiago robots), accurate and robust percep-
tion is critical for enabling manipulation tasks in dynamic and/or unstructured

environments. This stage is inherently challenging due to:

® Variability in object geometry and texture: robots must generalize across
different shapes, sizes and surface properties.

* Occlusion and cluttered environments: graspable objects are often par-
tially obscured, necessitating robust segmentation techniques

* Real-time constraints: computational efficiency is critical to enable re-
sponsive decision-making.

To address these challenges, recent advancements in vision-language mod-
els and deep learning-based segmentation have significantly enhanced robotic
perception capabilities. Various perception models and architectures have emerged

to meet these demands, each offering distinct strengths and limitations.

14

CHAPTER 2. LITERATURE REVIEW

END-TO-END ViIsION LANGUAGE MODEL (RT-2)

A significant advancement in perception-based grasping is in RT-2 (Robotics
Transformer 2) model [3]. RT-2 represents a vision-language-action model that
seamlessly integrates vision-based perception with high-level reasoning and ac-
tion generation. Unlike traditional perception models that rely solely on image
processing techniques, RT-2 incorporates semantic reasoning from vast internet-
scale datasets, enabling the robot to interpret commands in natural language and

generate executable motion plans.

RT-2 operates as an end-to-end model that translates RGB input and natural
language command into robot actions, effectively enabling closed-loop control

through high-level reasoning without explicit grasp pose programming.

RT-2 generalizes to unseen objects by leveraging web-scale pre-training en-
abling high-level tasks (e.g. “Pick up the largest red object and place it next to the
green cup”) through visual-language alignment, without explicit object annota-
tions. The model outputs continuous action tokens. However, the model’s to-
kenized action format is rigid, and its reliance on GPU acceleration (~500ms on
A100/V100 GPUs), renders it incompatible with CPU-only platforms like Tiago.

This directly informs RQ1: While RT-2 excels in semantic generalization its
hardware demands, and fixed output structures limit its deployment in embed-
ded systems. The GAM pipeline addresses this gap by exploring lightweight
alternatives better suited for CPU execution.

SEGMENT-ANYTHING-MODEL

SAM (SAM-v1) [27] is a foundation model that revolutionizes instance seg-
mentation, designed for promptable segmentation, promptable masks, sup-
porting points, boxes, or text as inputs; capable of generating high-quality ob-
ject masks. Pre-trained on 1.1B masks (SA-1B dataset), SAM achieves zero-shot
transfer to novel objects, meaning that it can identify and isolate objects with-
out task specific fine-tuning; making it ideal for cluttered scenes. While SAM-v2
[50] has recently been released with enhancements targeted toward video object
segmentation and tracking. Since the scope of this work is confined to single-

frame object segmentation in static scenes, SAM (v1) remains sufficient.

15

2.2. PERCEPTION FOR ROBOTIC GRASPING

SAM consists of three core components: an image encoder which extracts
high-level image embeddings; a prompt encoder that accepts multiple prompt
formats, including points, bounding boxes, and free-form text descriptions; and
amask decoder that generates 512x512 masks via cross-attention between image

embeddings and prompt vectors.

The mask decoding phase, which can generate around 500 masks from a sin-
gle frame enabling exhaustive scene parsing; runs ~5ms on an A100 GPU vs ~2s
on Intel I7-13900K CPU. Furthermore, SAM’s text encoder underperforms when
prompts lack spatial context (e.g., “segment the apple” in cluttered scenes), lead-
ing to segmentation failures; also, it struggles with fine structures (e.g., <5px
utensil handles) compared to “zoom-in” methods like Mask2Former [7], mak-

ing it unideal to this study-case.

This connects to RQ1 by showing that promptable segmentation can oper-
ate under minimal supervision. However, its GPU needs again highlight the
trade-off between generalization and real-time feasibility. GAM adopts hybrid

strategies to mitigate these limitations.

YOLOE

YOLOe (You Only Look Once everything) [62] is a recently introduced real-time
detection and segmentation framework that extends the capabilities of the YOLO
family by supporting text-prompted, visual-prompted, and prompt-free per-

ception within a single unified model architecture.

YOLOe is designed foropen-world perception, where it can flexibly detect ar-
bitrary objects guided by a natural language or visual hints, or operate with-
out explicit prompting. Includes a feature extraction network, regression and
segmentation heads, and a novel object embedding head for handling open-
vocabulary classification. Designed for real-time robotic applications, it ad-
dresses the limitation of closed-set YOLOvS8 variants while maintaining com-

putational efficiency.

While YOLOe advances open-world scenarios perception, three key limita-
tions impact its applicability in robotic grasping:

16

CHAPTER 2. LITERATURE REVIEW

1. AGPL Licensing: Derivatives of YOLOe inherit the Affero GPL (AGPL)
license, mandating open-source redistribution of modified code. This re-
stricts commercial deployment in proprietary robotic systems, as in the
context of PAL Robotics.

2. Multi-task trade off: Joint optimization of detection and segmentation re-
duces performance on frequent object categories, lowering detection APf
by 0.9% compared to single-task baselines [62].

3. Vocabulary constraints: : The built-in 4585-category vocabulary limits
generalization to niche industrial objects (e.g., custom 3D-printed tools),
unlike LLM-based methods like GenerateU [62] that leverages generative
language models.

YOLOe's architectural innovations align with the demand of modular grasp-
ing pipelines like GAM: natural language integration, resource-constrained de-
ployment, relevant to RQ1, and dynamic environment adaptation. To address
YOLOe’s mask quality limitations (e.g., blurred edges on thin structures) and
the AGPL licensing limit, GAM integrates GSAM, introduced in the following

sub-section, for pixel-precise segmentation.

(GROUNDED-SEGMENT-ANYTHING

Grounded-Segment-Anything (GSAM) [52] is a recent SoTA perception frame-
work that addresses one of the most pressing challenges in robotic grasping:
open-vocabulary instance segmentation under unconstrained, real-world con-
ditions. It achieves this by composing two powerful expert models: Grounding
DINO [33], an open-set object detector trained on over 10 million image-text
pairs, and SAM [27], defined in the sub-section 2.2.2.

This aggregate model allows Grounded-SAM (GSAM) [52] to segment virtually
any object or region referenced through natural language: unlike static classi-
tier or fixed detectors, it dynamically adapts to a wide range of objects prompts,
enabling human-interpretable interactions in robotic systems. Its grounding
mechanism can detect rare or niche objects (e.g., botanical species, industrial
components) unseen during training, addressing a major gap in closed-set de-
tectors. The output quality is dependent on prompt specificity. Ambiguous or
poorly formulated prompts can lead to suboptimal detection and segmentation.

Grounded-SAM is structured around a two-stage pipeline:

17

2.2. PERCEPTION FOR ROBOTIC GRASPING

1. Detection via Grounding DINO: Given an RGB input image and a user-
defined text prompt (e.g., “the small green apple”), Grounding DINO per-
forms open-set object detection, returning bounding boxes aligned with
the semantic reference [33].

2. Segmentation via SAM: These bounding boxes are then passed as spa-
tial prompts to SAM, which then generates pixel-accurate instance masks
corresponding to the detected regions.

This division of concerns—semantic alignment via DINO and special preci-
sion via SAM—enables Grounded-SAM to outperform traditional segmentation
pipelines on tasks requiring fine-grained, prompt-specific understanding, facil-
itating integration into frameworks like ROS2-based systems. It also excels in
zero-shot generalization, as evidenced by its 48.7 mAP! (mean Average Preci-
sion, AP?) on the SegInW benchmark (Segmentation in the Wild) [67], surpassing
methods like UNINEXT and OpenSeeD [52][69]. These properties align strongly
with the goals of modular grasping pipelines like GAM, particularly in unstruc-
tured environments where novel objects must be identified and manipulated

without retraining.

The two-stage nature of the architecture imposes a higher latency (~13s infer-
ence on CPU-only systems), which may hinder real-time grasping on resource-
constrained platforms. The segmentation accuracy is bounded by the bounding

box produced by DINO, thus, errors in detection propagates to segmentation.

In the context of this thesis, Grounded-SAM excels for interactive grasping
scenarios. While its computational cost currently does not match the real-time
requirements, its accurate semantic-rich output trade-offs the inference speed,
thus, inform hybrid strategies in GAM (e.g., offline segmentation for static scenes).

This balances flexibility and computational efficiency, informing RQ1.

In conclusion, as notable in Table 2.1, perception models vary significantly
in semantic flexibility, latency, and hardware demands. YOLOe achieves real-
time performance but struggles with occlusion, whereas RT-2’s zero-shot capa-

!mean Average Precision (mAP) is the average of AP values across all classes in a dataset.

It provides a single metric to evaluate overall a model performance.

2 Average Precision (AP) quantifies the precision-recall trade-off for a single class. It is calcu-
lated as the area under the precision-recall curve generated by varying the confidence threshold
of predictions. Evaluates how well a model detects the true positives.

18

CHAPTER 2. LITERATURE REVIEW

Model Input Latency Performance

RT-2 RGB + Text ~500ms (GPU) ~89% success rate [5]+[1]
SAM RGB + Points/Boxes ~5ms (GPU) 44.7 AP [20]

YOLOe RGB + Text/Visual 102.5FPS (T4 GPU) 35.9 AP [20]

GSAM RGB + Text ~14s (CPU) 48.7mAP [67]

Table 2.1: Comparison of Perception approaches.

bilities reduce the need for retraining but at the cost of latency, while GSAM
seems to be suited as it has the best performance/requirements ratio. The GAM
pipeline leverages these insights to build a CPU-optimized hybrid system that
balances generalization capacity and real-time constraints, directly addressing
RQ1.

While these models offer reliable object localization, grasping demands a deeper
understanding of object geometry. The next section explores methods for recon-
structing 3D scenes from RGB-D input to enable effective robotic manipulation.

3D SCENE REPRESENTATION

Models like SAM [27] and YOLOe [62], outlined in the previous section, pri-
marily serve the function of perceiving the environment detecting, segmenting
and reasoning about objects. However, for successful 3D scene representation
and task execution, this perceptual information must be structured and contex-
tualized. Object masks, bounding boxes and labels alone are insufficient; robots
require a coherent, up-to-date 3D representation that captures both geometry
and semantic. In this section, we explore recent approaches to 3D scene recon-
struction, evaluating their suitability for integration into the GAM pipeline, ad-
dressing RQ1 and RQ2.

3D Reconstruction is a critical component of robotic grasping, enabling the
robot to infer complete object geometry for collision free, stable grips in clut-
tered environments [22] [65]. However, reconstructing full 3D models from par-
tial sensor data (e.g., single-view RGB-D scan) remains inherently challenging
due to occlusions, sensor noise, limited viewpoints and real time computational
constraints. These challenges often force robots to compute grasps using incom-

plete point clouds, leading to suboptimal contact configurations and increased

19

2.3. 3D SCENE REPRESENTATION

collision risk. Over the past decade, four dominant paradigms have emerged to
tackle these problems:

1. Volumetric fusion: Classical methods integrate multiple depth frames
into voxel grids using Truncated Signed Distance Fields (TSDF) [38], balanc-
ing accuracy with computational cost.

2. Learning based implicit representations encodes geometry as continuous
neural functions (e.g., DeepSDF, Neural Radiance Fields (NeRF) [45] [35]),
enabling high-fidelity completion of partial scans.

3. Active interactive reconstruction: Leverages robotic manipulation to repo-
sition objects or sensors, capturing occluded surfaces at the cost of added
motion planning.

4. Neural implicit field methods: Jointly predict 3D shape and grasp poses
in a unified framework enabling near real-time, zero-shot reconstruction
[22].

Without explicit shape modelling, robots often compute grasps using incom-
plete point clouds, leading to suboptimal contact configurations and increased
risk of collision [65].

The transition from flat perception to structured scene understanding is cru-
cial for enabling tasks such as planning, grasping, and interaction. Moreover,
real time operation on embedded platforms imposes stringent computational
constraints, forcing reconstruction algorithms to balance speed against fidelity.
Below, we evaluate four representative approaches in terms of their reconstruc-
tion quality, runtime feasibility, and compatibility with real-world RGB-D in-
puts. These evaluations support the design choices made in the GAM pipeline
referring to RQ2.

PoINT-NERF

Point-NeRF [64] introduces a hybrid paradigm for 3D reconstruction by uni-
fying Neural Radiance Fields (NeRFs) with point cloud representations, over-
coming the computational inefficiencies and scalability issues of conventional
NeRFs [35], that rely on global MLPs to encode scenes. Point-NeRF leverages
a neural point cloud to model localized radiance fields, enabling rapid initial-
ization via deep multi-view stereo (MVS) networks and efficient per-scene opti-

mization. As a result, it reduces reconstruction time by an order of magnitude

20

CHAPTER 2. LITERATURE REVIEW

(= 30x) compared to vanilla NeRF while achieving comparable or superior ren-
dering quality, making it particularly suitable for robotic grasping applications
that demand real-time scene understanding [22].

This framework also supports integration with off-the-shelf reconstruction
pipelines (e.g., COLMAP [57] [56]) via point pruning/growing, robustly han-
dling noisy or incomplete inputs common in real-world RGB-D scans.

Point-NeRF’s main advantages include:

* Real-Time Feasibility: Inference at 16k points takes ~2 seconds on an RTX
4090 GPU, with optimized implementations achieving 15 FPS for real-time
rendering. This enables rapid scene updates during robotic manipulation
[64].

* High-Fidelity Geometry: Generates up to 131k-point clouds, captur-
ing fine structures (e.g., thin ropes, texture gradients) critical for collision-
aware grasp planning.

* Robustness to Sparse Inputs: The point growing mechanism fills occluded
regions, reducing grasp failures caused by incomplete geometry. For ex-
ample, on COLMAP-derived point clouds with 50% sparsity, Point-NeRF

achieves 30.18 dB PSNR? (Peak Signal-to-Noise Ratio) after optimization.

Although Point-NeRF excels in quality and speed on GPU equipped ma-
chines, its reliance on multi view RGB inputs and GPU dependency renders
it infeasible for the Tiago platforms, which capture single RGB-D views. Thus,
Point-NeRF, falls short of addressing RQ1’s goal of generalization from limited
perceptual input in real-world robotic systems. Consequently, a single view re-
construction approach is required for integration into the GAM pipeline.

POINTINFINITY

PointInfinity [21] advances diffusion-based 3D reconstruction by balancing com-
putational efficiency and high-resolution output, critical for robotic grasping.
Unlike traditional transformers, which scale quadratically with point count, PointIn-
finity employs a two-stream transformer architecture that decouples surface mod-

elling from point generation. At its core, a fixed-size latent representation (256

3(Peak Signal-to-Noise Ratio) PSNR is defined as the ratio between the power of the signal
and the power of the noise in an image, indicating the quality of the image with higher values
representing better quality by reducing noise.

21

2.3. 3D SCENE REPRESENTATION

tokens) captures the underlying 3D shape, while a variable-resolution data stream
generates point cloud through lightweight read /write cross-attention modules.
This design enables training at low resolution (e.g., 1,024 points) while seam-
lessly generalizing to high-resolution outputs (up to 131k points) during infer-

ence, achieving linear computational scaling with point count [21].

Increasing the number of points during inference improves fidelity by enhanc-
ing information flow between latent and data streams, for example Chamfer Dis-
tance* drops from 0.227 at 1k points (CD@1k’) to 0.181 at 8k points. Its ultra-
high-resolution output (e.g., ~181k points) enable direct surface reconstruction

via marching cubes, crucial for collision-aware grasp planning [21].

PointInfinity addresses key limitations of prior methods in grasping pipelines:

* Denser Geometry: generates 30x more points than Point-E [42], captur-
ing fine details (e.g., thin structures, texture, details) that collision risk in
cluttered environments.

* Real-Time feasibility: Inference at 16k points takes ~2 seconds on an RTX
4090 GPU, making it suitable for dynamic GPU-equipped robotic tasks.

* Robustness: trained on noisy CO3D-v2 data [51], it generalizes to real-
world RGB-D scans without requiring multi-view inputs.

However, advising RQ1, PointInfinity is still GPU-dependent and lacks real-
time capabilities under CPU-only setups, underscoring the GAM pipeline’s need
for CPU-feasible alternatives. This supports RQ2 by demonstrating the value of

scalable output resolution in 3D reconstruction.

Deep SDF

DeepSDF, introduced by Park et al. (2019) [45], presents a novel approach to
3D shape representation by learning continuous sdf! (sdf!) via neural networks.
Unlike classical discretized or parametric methods, DeepSDF implicitly models
surfaces as zero-level sets of a learned volumetric field, enabling high-fidelity

reconstruction, interpolation, and completion of complex topologies.

“The Chamfer Distance (CD) quantifies the difference between two point clouds by averag-
ing the nearest-neighbour distances between their points.
>Chamfer Distance evaluated on a set of 1k points.

22

CHAPTER 2. LITERATURE REVIEW

This approach achieves SoTA reconstruction fidelity, outperforming voxel-
based (Octree Generating Networks) and mesh-based (AtlasNet [19]) methods in
CD and Earth Mover’s Distance (EMD). The continuous SDF formulation intrin-
sically enforces smooth, closed surfaces, avoiding topological rigidity of meshes
and sparsity of point clouds. The method robustly completes partial inputs (e.g.,
single-view depth scans) by optimizing latent codes against observed SDF sam-
ples, informing RQ1; quantitative results show superior completion accuracy
over 3D-EPN (3D Encoder-Predictor networks), with only linear degradation un-
der increasing noise. A 256-dimensional latent code suffices to represent entire
shape classes (e.g., chairs, planes), yielding a model size of 7.4MB an order of

magnitude smaller than typical voxel grids.

However, inference requires iterative latent code optimization, resulting in a
median inference latency of 9.72s, over 900x slower than AtlasNet (0.01s) [19]:
this precludes real-time applications. Moreover, DeepSDF’s dependency on wa-
tertight meshes limits applicability to synthetic datasets (e.g., ShapeNet [4]), re-
ferring to RQ2; real-world RGB-D data must undergo complex preprocessing
to generate SDF samples, contrasting with methods that process raw inputs di-
rectly. Finally, its auto-decoder architecture complicates integration with GAM
frameworks that rely on adversarial objectives to enforce realism or diversity
in generated outputs. Its reliance on precomputed SDF samples likewise intro-
duces complexity and latency incompatible with direct sensor-data processing
as other approaches grant (e.g.PointInfinity, MCC), as noted in Table 2.2.

MCC

Multiview Compressive Coding (MCC), proposed by Wu et al. (2023)[63], intro-
duces a scalable, category-agnostic framework for single-view 3D reconstruction
of both objects and scenes. By leveraging transformer architecture and large-
scale training on diverse RGB-D video data, MCC compresses appearance and
geometry into a 3D-aware latent representation, enabling high-fidelity recon-

struction from partial observations.

MCC processes RGB-D inputs to predict occupancy and colour for query 3D
points. The encoder fuses image and unprojected depth points via dual Vil-
based towers while the decoder engages masked attention to avoid cross-query

23

2.3. 3D SCENE REPRESENTATION

dependencies Supervision derives from noisy input clouds generated via Structure-
from-Motion (S5fM) from posed RGB-D frames, eliminating reliance on CAD
models, SDFs or precomputed meshes, thus, improving generalization. The
model learns to complete occluded regions by reasoning across Multiview con-
sistency. Training on six datasets (e.g., CO3D [51], Hypersim [54], DALL-E 2 gen-
erations [48]) demonstrates robustness to domain shifts including synthetic-to-
real transfer.

MCC demonstrates three key strengths:

¢ Generalization: Achieves zero-shot reconstruction on in-the-wild iPhone
captures, Al-generated images, and novel scenes, outperforming NeRF-
based methods and explicit designs like PoinTr [66].

¢ Efficiency: The lightweight decoder allows dynamic resolution outputs
without re-encoding inputs, achieving 56.7 F1-score on CO3D-v2 and 0.234
CD on CO3D (CD@1Kk) [51].

* Noise Robustness: Correctimperfect depth inputs and scales linearly with
dataset size, showing improvements in reconstruction quality

Performance degrades with unreliable depth estimates (e.g., off-the-shelf monoc-
ular depth predictors on ImageNet) and it struggles with high-frequency details
(e.g., text on objects, finer details, texture) due to single-view ambiguity. Unlike
DeepSDF, which requires watertight meshes for training [45], MCC processes
raw RGB-D inputs directly, bypassing CAD model dependencies, enabling di-

rect integration with Tiago’s sensor data.

MCC advances single-view 3D reconstruction by unifying object and scene un-
derstanding under a scalable, transformer-based framework. Its ability to gen-
eralize across domains and correct noisy inputs makes this approach suited for
the GAM pipeline, directly offering a practical solution to both RQ1 and RQ2.
For integration into real-time application, future work must address inference
latency. But, since the scope of the reconstruction is to let the robot understand
the overall shape of the object, finer details (e.g., texture, text on the surface, etc.)
are deemed unnecessary. Trading off the granularity that MCC outputs the re-
constructed point cloud with the inference latency;, it is possible to infer on CPU
with ~8s on intel i7 CPU to generate a reconstructed object with ~8k points.

24

CHAPTER 2. LITERATURE REVIEW

Model Input Training Resolution PSNR CD @1k
PointInfinity RGB-D 1,024 points 14.31 0.179 [51]
Point-NeRF Multi-view RGB Multi-view images ~33.31[36] ~0.13[8]
DeepSDF SDF samples Marching Cubes at 5123 - 0.204 [4]
MCC Single RGB-D RGB-D images 14.03 0.234 [51]

Table 2.2: Comparison of 3D reconstruction models.

In summary, as shown in Table 2.2 3D scene reconstruction methods vary
significantly in their trade-offs between fidelity, computational efficiency, and
real-time applicability. Classical representations such as point clouds and SDFs
offer geometric precision and established analytical tools but often fall short in
dynamic or noisy environments. Data-driven techniques like Point-NeRF and
DeepSDF enable dense reconstructions and latent encodings of shape but impose
high computational demands, limiting their deployment in embedded robotic
systems. Hybrid methods—exemplified by Multiview Compressive Coding (MCC)—
represent a promising middle ground by integrating learning-based regulariza-
tion with traditional fusion algorithms. These methods allow for scalable scene
understanding while preserving interpretability and modularity, both of which

are central to the pipeline proposed in this work.

With the 3D structure of the object established, the next step is to generate
candidate grasp configurations that are both feasible and robust under the con-
ditions defined by the GAM pipeline. The following section evaluates methods

for generating stable 6-DoF grasps under real-world constraints.

GRASPING Pose DETECTION

Grasping pose generation is the critical bridge between 3D shape understand-
ing and physical execution, translating reconstructed object geometry into can-
didate end-effector configurations that a robot can feasibly reach and apply sta-
ble forces with [28]. This stage must account for the full 6-DoF of the gripper
(three translational, three rotational) often inferred from a single-view or multi-
view depth data [28]. Methods for grasp pose generation broadly split into an-
alytic and data-driven paradigms, reflecting a trade-off between interpretability

and empirical performance [68].

25

2.4. GRASPING POSE DETECTION

Analytic approaches compute grasps by optimizing force-closure or form-
closure criteria over known object models, leveraging classical grasp quality
metrics to guarantee theoretical stability [53]. In contrast, data-driven methods
either sample grasp candidates densely in the workspace, then rank them using
learned quality predictors (e.g., GPD, Dex-Net) [29] or directly regress a small
set of high-quality grasps using DNNs [30].

Building on data-driven methods, RL frameworks, such as QT-Opt [24], im-
prove robustness in unstructured environments by iteratively refining grasps
through simulated trial-and-error. Exemplar-based and generative models lever-
age shape priors, either retrieved from databases or synthesized via autoen-
coders, to propose grasps consistent with object semantics and affordances. Eval-
uation spans success rates in simulation/hardware trials and robustness scores
from tool like Grasplt! [37] or GQ-CNN [37], quantifying a candidate’s resistance
to pose and friction uncertainties. Achieving real-time performance on embed-
ded platforms further imposes stringent limits (<500ms) on candidate count and

inference latency.

To address these challenges, this section critically reviews representative cat-
egories of grasp pose generation methods, in line with RQ2: analytic optimiza-
tion, sampling-and-ranking, direct regression, evaluating them in terms of com-
putational efficiency, generalization to novel objects, and compatibility with
the GAM pipeline.

GRASP IT LIKE A Pro 2.0

Palleschi et al. (2023) present Grasp it Like a pro 2.0 (GLP) [44], a data-driven
grasp planning algorithm that combines human demonstrations and basic shape
decomposition to generate 6-DoF grasps for unknown objects. The authors val-
idated GLP 2.0 on both a compliant underactuated SoftHand (94% success over
150 grasps on 30 objects) and a rigid two-finger Franka Emika Hand (85% suc-
cess over 80 grasps on 16 objects). GLP 2.0 operates in three stages:

1. Shape decomposition: An input RGB-D point cloud is segmented into
minimum-volume bounding boxes (MVBBs) using a logarithmic split cri-
terion, prioritizing regions of high point density and centroid proximity
to approximate handle-like geometries [add ref]. This balances granularity

by decomposing small objects into fewer boxes and larger /complex shapes
into finer approximations (RQ2, section 2.6)[44].

26

CHAPTER 2. LITERATURE REVIEW

2. Grasp proposal: A decision tree regressor (DTR) trained on human demon-
strations of grasps performed on cuboid primitives, maps each MVBB to a
set of 6-DoF gripper poses and associated interaction wrenches. The DTR
generalizes to novel box dimensions, enabling grasp synthesis without ex-
plicit object models [44].

3. Quality ranking: Each grasp candidate is scored by box score, the den-
sity and proximity to point-cloud centroid; wrench score, normalized pre-
dicted force/torque magnitude; alignment score, the geometric alignment
and hand-opening constraints; collision score, that is the volumetric col-
lision checks for both entire gripper and finger closure regions [44]

The top-scoring, reachable grasp is selected and executed via an inverse-

kinematics solver.

GLP 2.0, despite learned from only 648 demonstrations, it generalizes across
very different shapes and two gripper types, integrating geometric, force-based,
and collision criteria into a unified score. Quality hinges on accurate segmenta-
tion and MVBB fitting; very noisy or sparse scans could degrade performance.
Moreover, the model inherits biases of demonstration set, potentially reducing

grasp diversity for highly irregular shapes.

GLP 2.0 relates to RQ2 by demonstrating the feasibility of low-data, high-
generalization grasp policies. Once the authors release their code, integrating
this approach into the pipeline could enhance grasp robustness while preserv-
ing modularity. Until then, its hybrid data-driven and analytical design offers
a template for balancing geometric reasoning with learned priors in custom im-

plementations.

CoNTACT-GRASPNET

Contact-GraspNet [61] pioneers an end-to-end 6-DoF grasp proposal network
that directly processes a scene’s depth point cloud to predict antipodal parallel-
jaw grasps in cluttered environments. By treating visible surface points as po-
tential contact roots, it simplifies 6-DoF grasps onto their contact points in the
observed cloud reducing the grasp representation to a 4-DoF parameterization—
contact point rotation angle and gripper width—enabling efficient learning and
inference. Training relies on the ACRONYM dataset’s 17 million simulated grasps
across 8k+ objects [11], which are projected onto rendered point clouds. Sur-

27

2.4. GRASPING POSE DETECTION

face points within 5mm of a ground-truth contacts are assigned grasp poses and
widths via nearest-neighbour association.

At inference latency, Contact-GraspNet processes either the full scene or a lo-
calized region (e.g., 30 cm® around a target object) in <0.3s on a NVIDIA V100
GPU, making it suitable for reactive, closed-loop grasping [61]. Grasps are fil-
tered by confidence thresholds, kinematic reachability, and collision checks us-
ing voxelized occupancy grids, and the highest-scoring proposal is executed
without requiring perfect segmentation [61]. In real-robot trials using a Franka
Panda and 51 unseen objects arranged in nine cluttered scenes, the method achieves
a 90.2% overall grasp success rate and an 84.3% first-attempt rate, outperform-
ing prior 6-DoF pipelines (62.7% and 80.4% respectively) while reducing the av-
erage number of attempts per object to 1.16 [61].

Despite its many advances, Contact-GraspNet is currently tailored to parallel-
jaw grippers, and its reliance on visible surface points means it may struggle
with heavily occluded contacts. Moreover, while noise injection during training
aids transfer, extremely sparse or noisy sensor data might still impair contact
confidence predictions. Nevertheless, by unifying grasp generation, collision
reasoning, and contact visibility into a single, fast network, Contact-GraspNet
represents a significant step toward reliable, reactive grasping in unstructured,
cluttered environments.

This informs both RQ1 and RQ2 by emphasizing that learning-based mod-
els can handle occlusion robustly. However, their compute demands remain a
bottleneck, reinforcing GAM’s need for scalable grasp policies compatible with
limited hardware.

ANYGRASP

AnyGrasp [13] advances robotic grasping by unifying spatial and temporal
perception into a single framework, enabling parallel grippers to achieve human-
like robustness and continuity in unstructured environments. The system oper-
ates through two core modules:

1. Spatial Grasp Synthesis: A geometry processing module ingests a partial
point cloud and predicts dense 7-DoF grasp poses (position, orientation

28

CHAPTER 2. LITERATURE REVIEW

and gripper width) in 100ms via a single forward pass. Unlike sampling-
based methods, this module evaluates grasps holistically by analysing global
geometric cues, implicitly learning collision avoidance and stability met-
rics. Key innovations include the stability score, which predicts the nor-
malized distance from the gripper plane to the object’s estimated Center
of Mass (CoM), mimicking human intuition to prioritize balanced grasps;
and collision awareness that discards grasps lacking space for gripper

pre-shaping by integrating implicit obstacle detection into the scoring pro-
cess.

2. Temporal Consistency: A temporal association module that enables smooth
tracking of dynamic objects by minimizing the distance between grasps in
the object’s coordinate system.

Trained on 144 objects across 268 real-world scenes, AnyGrasp achieves a
93.3% success rate on 300 unseen objects—matching human performance under

open-loop conditions.

While its monolithic design and GPU dependency limit its direct adoption in
resource-constrained pipelines, linked to RQ1. AnyGrasp highlights the oppor-
tunity and challenge posed by dynamic scenes, related to RQ2, but GAM focuses

on single-frame inference for real-time viability.

The authors” pending code release of their grasp library could enable future
integration, particularly for dynamic grasping tasks requiring real-time pose
tracking. Until then, its emphasis on real-world training and dense spatiotempo-
ral supervision offers valuable insights for developing robust, human-inspired
grasp planners.

GPD

Grasp Pose Detection proposed by ten Pas et al. [46] represents a paradigm
shift in robotic grasping by directly localizing 6-DoF grasping poses in 3D point
clouds, without requiring prior object segmentation or CAD models. Its pri-
mary contributions include a novel grasp hypothesis generation method, a
multi-view descriptor incorporating surface normals and occlusion data, and
a category-aware classification strategy. GPD operates through two primary
stages:

1. Grasp candidate Sampling: GPD generates grasp candidates by analyz-
ing local surface geometry (via Darboux frames) [46] and principal cur-
vature axes. This avoids reliance on object segmentation enabling detec-
tion in dense clutter. A grid search over orientation (e.g., ®-axis rotations)

29

2.4. GRASPING POSE DETECTION

ensures diverse candidate poses, optimized for parallel-jaw grippers by
aligning with minor principal curvature axis [46].

2. CNN-based Classification: A multi-view descriptor encodes geometric
and occlusion data from three orthogonal planes (x-y, x-z, y-z), combin-
ing surface normals, observed voxels, and unobserved regions into a 15-
channel input for a LeNet-style CNN [46].

Unlike template-based methods (e.g., Herzog et al.), GPD samples candi-
dates on any visible surface, improving generalizability [17]. The method’s mod-
ular architecture, spanning sampling, encoding, classification and selection,
aligns well with ROS2’s design principles, particularly its emphasis on modu-
larity and real-time performance: it has been used also in the ROS2 Movelt
Deep Grasps framework.

GPD answers RQ2 demonstrating practical runtime performance, critical for
real-world deployment. Generating 1,000 grasp candidates requires 0.8-1.7 sec-
onds for sampling and 0.3-6.2 seconds for classification, depending on the de-
scriptor type. The 3-channel descriptor reduces inference speed by x4 compared
to the 15-channel variant (0.3-0.4 seconds vs. 4.3-6.2 seconds for 1k candidates)
with only a marginal accuracy drop (<5%) [46].

Given GPD’s qualities it is considered and implemented in the GAM pipeline.

Model Input Training Data Gripper Type Success Rate
GLP 2.0 RGB-D cloud 648 human grasps Soft + rigid 94% + 85%
Contact-GraspNet Point cloud ACRONYM [11] Parallel 90.2%
AnyGrasp Partial cloud Real-world data Parallel 93.3%

GPD Point cloud 300k grasps Parallel 93%

Table 2.3: Comparison of grasp pose detection methods.

Grasp pose detection remains a pivotal component of the robotic manipula-
tion pipeline, bridging the gap between abstract object understanding and ex-
ecutable action. The reviewed approaches, evidenced in Table 2.3, highlight a
broad methodological spectrum—from purely geometric algorithms (e.g., GPD),
which leverage local curvature and surface normals, to deep learning-based
models such as Contact-GraspNet and AnyGrasp, which excel in cluttered, real-
world environments. Hybrid systems like GLP 2.0 further demonstrate the power

30

CHAPTER 2. LITERATURE REVIEW

of combining human priors and analytical features within data-driven frame-
works, offering generalization with minimal data. However, a recurring limi-
tation across these models lies in their hardware specificity (e.g., parallel-jaw
bias), GPU dependency, and difficulty adapting to novel or irregular geome-
tries. For this thesis, the modular evaluation of these grasping strategies informs
a pipeline capable of supporting both computationally intensive learning-based
methods and lightweight, geometry-aware alternatives. This flexibility ensures
robust performance across varied object categories and robotic hands within the
real-time constraints of the Tiago platform.

After generating candidate grasps, the system must execute them via robust
motion planning and trajectory control. The following section reviews contem-

porary strategies in task-based planning.

TRAJECTORY PLANNING & CONTROL

Effective trajectory planning is crucial for robotic manipulation, especially in
dynamic environments where precision and adaptability are imperative. This
component directly supports RQ3, which examines how motion planning archi-
tectures improve responsiveness in real-world scenarios. This section explores
various motion planning frameworks and algorithms, focusing on their appli-

cability to complex tasks and real-time execution.

MovelT2 & MTC

Movelt2 is a widely adopted motion planning framework in the ROS2 ecosys-
tem, offering advanced tools for kinematics, collision checking and trajectory
generation. Central to its architecture is the Planning Scene, a dynamic and con-
tinuously updated model of the robot’s environment, including obstacles and
object states. This real-time environmental model ensures not only geometric

feasibility but also situational awareness necessary for reliable manipulation.

Movelt Task Constructor (MTC) [47] [18] builds upon Movelt2 and introduces
a modular and hierarchical abstraction for defining and solving complex ma-
nipulation tasks. Rather than relying on monolithic trajectory planners, MTC

31

2.5. TRAJECTORY PLANNING & CONTROL

decomposes high-level goals, specified as Tasks, into a sequence of interdepen-
dent subtasks handled by specialized Stages responsible for a distinct subprob-
lem. This approach inherently supports the modularity required by RQ3. These
Stages can be flexibly arranged respecting directional data flow, to form both
linear and branching task pipelines. The order in which stages can be placed is
restricted by the direction in which results are passed. These stages, visualized

in Fig.2.2, can be categorized into the following functional types:

* Generators: Initiate planning by producing potential start states. Com-
pute their results independently of their neighbour stages and pass them in
both directions, backwards and forwards. An example is an Inverse Kine-
matics® (IK) sampler, which kinematics solutions used by adjacent motion
stages [47].

¢ Propagators: Extend partial solutions by applying motion primitives. They
receive input from one neighbour stage, solve a subproblem and then prop-
agate their result on the opposite site. An example is a stage that computes
a Cartesian path based on either a start or a goal state [47].

¢ Connectors: Bridge disjointed solution segments without further propa-
gation, such as free-motion plans connecting two static poses [47].

Generator Stage (1) Propagator Stage (11/ 1/ 1) Connector Stage (||)

e Produces and propagates o Receives aninput e Connects InterfaceStates of
InterfaceStates to adjacent InterfaceState, solves a both adjacent stages
Stages problem and propagates the

solution state Example:
Examples: o Forward, backward or both o Free-motion plan between

s Pose sampler (+ K solver) start and goal states

o Fixed waypoint state Examples:

e Output/Filter of current state e (Relative) cartesian motions

(approach/lift when grasping)
« Scene manipulations

(attach/detach objects, ACM)
e Filter/Validator of input states

Figure 2.2: Main MTC Stages [47].

®Inverse kinematics (IK) is the process of determining the joint angles required for a robotic
arm or other articulated system to reach a specific target position and orientation in space (6-
DoF). It essentially works backward from the desired end-effector position to find the corre-
sponding joint configuration.

32

CHAPTER 2. LITERATURE REVIEW

There are different hierarchy types allowing to encapsulate inferior stages.
Stages without subordinate stages are called primitive stages, higher-level stages

are called container stages. There are three container types:

* Wrappers: Modify or filter results from other stages. For example, an IK
wrapper may constrain solutions to a given pose [47].

* Serial Container: Hold a sequence of subordinate stages and only con-
sider end-to-end solutions as results, such as a pick-and-place routine [47].

e Parallel Containers: Manage multiple alternatives or fallback solvers, use-
ful for ambiguous tasks or recovery strategies [47].

This stage-based design, rooted in object-oriented inheritance, supports flex-
ible state transitions, adaptive task sequencing, and parameterized motion plan-

ning.

MTC leverages the Planning Scene to validate geometric and semantic consis-
tency across stages. This integration of perception and planning aligns closely
with the architectural philosophy of GAM.

MTC’s modular architecture, simplifies debugging and testing, its flexibil-
ity supports complex task definition, including conditional logic and fallback
strategies, which are challenging to implement with monolithic planners; and
its transparency, due to its detailed insights into each planning stage, facilitates
better understanding and optimization of the planning process. MTC seam-
lessly incorporates various planning algorithms (e.g. OMPL [60], CHOMP [49],
STOMP [23], etc.), within its stages, enabling hybrid planning strategies. These
features make MTC particularly suited for complex manipulation tasks requir-
ing adaptability and precision, connected to RQ3.

Beyond motion-level planning, several task-level planning frameworks have
been proposed in robotics, including Hierarchical Task Networks (HTNs), Be-
haviour Trees, and the Flexible Behaviour Engine (FlexBE) [71]. While these
systems provide abstract sequencing and reactive control for complex behaviours,
they typically lack integrated motion planning capabilities or require custom in-
terfacing with trajectory solvers. In contrast, the MTC natively integrates task
decomposition with motion feasibility, offering a unified framework for both

symbolic sequencing and continuous trajectory generation. While BTs excel

33

2.6. LIMITATIONS OF EXISTING WORK

at high-level logic, they often lack direct access to robot state or motion feasibil-
ity. MTC uniquely enables closed-loop, feedback-aware execution within a sin-
gle unified planning system, directly contributing to RQ3’s focus on real-time

resp onsiveness.

MoOTION PLANNING ALGORITHMS

Several motion planning algorithms are integrated within Movelt2, each with

distinct characteristics:

* OMPL (Open Motion Planning Library): Offers a suite of sampling-based
planners like RRT [59] and PRM [26]. These planners are probabilistically
complete and efficient in high-dimensional spaces but may produce sub-
optimal or bumpy paths without post-processing [60].

o CHOMP (Covariant Hamiltonian Optimization for Motion Planning): A gradient-
based optimizer that refined an initial trajectory to minimize a cost func-
tion enhancing smoothness and collision avoidance. While effective in
generating smooth paths, CHOMP can be sensitive to local minima and
requires careful parameter tuning [49].

* STOMP (Stochastic Trajectory Optimization for Motion Planning): Utilizes
stochastic sampling to iteratively improve trajectories, offering robustness
againstlocal minima and the ability to handle non-differentiable constraints.
STOMP often produces smoother trajectories than CHOMP and is less sen-
sitive to initial conditions [23].

These methods offer powerful motion planning foundations but generally
operate in isolation and lack task-level abstraction. They also require manual
tuning and cannot easily accommodate dynamic replanning or conditional logic.
In contrast, MTC supports these advanced behaviours natively, reinforcing the
rationale for its adoption in GAM.

Thus, this section supports RQ3 by evaluating how task-aware modular plan-

ning outperforms traditional algorithms in dynamic, real-world scenarios.

LIMITATIONS OF EXISTING WORK

The preceding sections have surveyed the state-of-the-art across the primary
components of robotic grasping: Perception, 3D Scene Representation, Grasp
Synthesis and trajectory planning. While each area has achieved impressive

34

CHAPTER 2. LITERATURE REVIEW

progress, most existing solutions fall short when it comes to integrated deploy-
ment in real-world service robots like the Tiagos. These limitations underscore
the integration gap between high-performing modules and deployable systems,
emphasizing the need for GAM’s modular, hardware-aware architecture.

High-performing perception models, such as RT-2 [3] and YOLOe [62] (Section
2.2) while accurate and flexible, rely heavily on GPU acceleration, limiting their
use on CPU-only systems, addressing RQ1. Grasp synthesis methods, while
successful in simulation, often fail to generalize to cluttered or unseen scenes,
especially under sensory noise, linked to RQ2. Conventional motion planning
strategies are monolithic frameworks and inflexible, limiting task-level adapta-
tion and environmental feedback integration, related to RQ3.

These limitations reveal a broader issue: a lack of modular, real-time, end-
to-end architectures capable of operating under hardware and situational con-
straints. This integration gap, despite strong performance of individual compo-
nents, justifies the development of the GAM pipeline.

This thesis proposes a solution by introducing a ROS2-native grasping archi-
tecture:

¢ Prompt-based perception with Grounded-SAM [52] enables flexible, in-
terpretable object segmentation under CPU constraints (RQ1).

* 3D Reconstruction using MCC [63] facilitates dense, task-relevant spatial
awareness with single-view RGB-D inputs (RQ2).

* Hybrid Grasp pose detection taking advantage of GPD [46], combining
data-driven and analytical criteria, improving generalizability (RQ2).

* Modular trajectory planning via MTC [18] enables responsive, stage-based
control (RQ3).

The theoretical framework guiding this study assumes that effective robotic
manipulation in open-world settings must emerge from tight coupling between
perception, 3D scene representation, and planning, while remaining modular
and adaptable. Each module is designed as swappable, testable unit within a
ROS2 architecture, allowing for flexibility in experimentation and iterative im-

provements.

35

2.6. LIMITATIONS OF EXISTING WORK

Thus, this study advances to the field by bridging the gap between high-performance
academic models and real-world robotic deployment. Chapter 3 presents the ar-
chitectural rationale, software integration, and methodological choices underly-
ing each module, laying the foundation for experimental evaluation and perfor-

mance analysis in subsequent sections.

36

Research Design and Implementation

This chapter presents the research design and implementation of the Grasp-
Anything-Model (GAM) pipeline, a modular architecture addressing the inte-
gration gap (section 2.6) between high-performance academic models and real-
world robotic deployment. Building upon the limitations identified in Chapter
2—such as GPU dependency in perception, rigid motion planning, and poor
generalization under hardware constraints—this work integrates five sequential
stages: Perception, 3D Reconstruction, Grasp Pose Detection, Motion Planning

and Execution.

Each stage employs SoTA methods optimized for the Tiago platforms” com-
putational limits, directly addressing RQ1 (generalization to real-world percep-
tion), RQ2 (precision-efficiency trade-off) and RQ3 (responsiveness).

Section 3.1 details the architectural synergy between ROS2 and BTs, showcas-
ing how the GAM pipeline balances modularity, reactivity and inference within
a unified control structure. Subsequent sections outline each pipeline stage, ex-
plaining how theoretical insights from Chapter 2 are translated into concrete
implementations. The chapter concludes with a high-level summary setting the
stage for experimental validation presented in Chapter 4.

37

3.1. SYSTEM ARCHITECTURE & CONTROL STRATEGY

SYSTEM ARCHITECTURE & CONTROL STRATEGY

The GAM pipeline is designed around the principles of modularity, scalability,
and real-time reactivity to suit the constraints of the Tiago robots while meeting
the functional requirements identified in Chapter 2. This section provides a top-
level view of the system’s architecture and execution logic, clarifying how BTs
and ROS2 integrate to form the backbone of the GAM orchestration strategy.

The architecture is structured as a distributed ROS2-based system, where
each core pipeline stage (Perception, 3D Reconstruction, Grasp Pose Detection,
Motion Planning, Execution) is implemented as a separate ROS2 service. These
services, along with the main action server, remain persistently active after being
launched via a centralized ROS2 launch file. This setup ensures that all required
models and dependencies are pre-loaded and accessible at runtime, minimizing

latency during inference.

The GAM pipeline adopts ROS2 actions and services in a complementary
design. ROS2 actions were selected for orchestrating the overall grasping task
due to their inherent support for asynchronous feedback, enabling the pipeline
to monitor execution progress (e.g., segmentation completion, grasp synthesis
status, etc..) and adaptively respond to dynamic environmental changes. Con-
versely, ROS2 services were employed for individual modules (e.g., Percep-
tion, 3D Reconstruction, etc..) to enforce deterministic, request-response interac-
tions. This design ensures that each BT node—implemented as a service client—
receives a single, atomic response (e.g., a segmentation mask or reconstructed
point cloud) without intermediate feedback overhead, aligning with the state-
less nature of module-level inference. By decoupling long-term task monitoring
(actions) from stateless, atomic computations (services), this hybrid approach
enhances system robustness, minimizes latency, and preserves modularity, en-
abling seamless integration of heterogeneous components. Moreover, ROS2 ser-
vices were prioritized over topics for their synchronous request-response paradigm,
ensuring atomicity in module-level computations (e.g., segmentation, recon-

struction) and avoiding race conditions inherent in pub-sub systems.

As suggested by the Fig 3.1, the execution of the pipeline is initiated when a
ROS2 action client sends a goal to the GAM action server. The goal, a natural lan-

38

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

N
Action

Client

Action Goal: <object_type>

Y

Action
Server

Grasp Tree
Root

Sequence

Grasp
Perceptio oA pose
Generator

Plan
Trajectory

Figure 3.1: ROS2 - BT interaction. The Action Client sends the Action goal,
specifying the object to grasp, to the Action Server, which starts to tick the BT
in Sequence.

guage prompt (e.g. “the blue mug”), is stored on a centralized BT blackboard!,
which facilitates global state sharing among the pipeline stages. This shared
memory structure allows downstream modules to access contextual informa-
tion produced by upstream nodes, such as the detected object’s mask (from the

perception stage) as input to the reconstruction module.

BTs serve as the high-level decision-making framework. Once the action server
receives the goal, it triggers a recursive tick on the BT. Each BT node corresponds
to a discrete task within the pipeline and is implemented as ROS2 service client
as shown in Fig 3.2. When ticked, the node sends a request to its associated
ROS2 service server, passing any required input data retrieved from the black-
board and/or the sensors (e.g., the RGB image, or depth). The server processes
the request (e.g., runs inference on a perception or reconstructor model) and

returns the service response, which is subsequently written back to the black-

!The blackboard acts as a shared workspace, comparable to a collaborative whiteboard,
where modules read/write variables (e.g., object masks, grasp poses). It is a simple key/value
storage shared by all the nodes of the BT.

39

3.1. SYSTEM ARCHITECTURE & CONTROL STRATEGY

Grasp Tree Root
Sequence

Srv Srv Srv
Client Client Client

Srv
Client

Srv
Client

Srv Srv ’ Srv Srv Srv
Server Server Server Server Server

Figure 3.2: BT Nodes implementation as ROS2 service servers.

board, eventually after some post-processing. This data-driven flow ensures
tight coupling between the system’s perceptual and planning components while

maintaining a clear separation of concerns.

A key strength of this architecture lies in its reusability and fault tolerance.
Because each node in the tree is both modular and state-aware: failures in one
stage (e.g., poor segmentation or grasp detection) can be managed with fall-
back behaviours or retries, rather than requiring full pipeline termination. Fur-
thermore, BTs allow asynchronous ticking and prioritization, enabling poten-
tial future extensions where real-time feedback or dynamic replanning is re-
quired. For example, for the prompt “the blue mug”, the Perception node invokes
Grounded-SAM to generate a binary mask, which is passed to 3D Reconstruction.
MCC then converts the mask into a ~1k point cloud reconstructing the blue mug,
enabling GPD to propose reliable grasps. If, for example, the grasp synthesis
fails, the GPD node will be re-executed. Three consecutive failures trigger the
failure of the pipeline.

In the following sub-sections will elaborate on the implementation-specific

aspects of the ROS2 and BT integration, focusing on the launch configuration,

service abstraction, and runtime orchestration.

40

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

RESEARCH DESGIN AND EVALUATION STRATEGY

This work adopts a quantitative system performance evaluation to validate
the GAM pipeline. The system is evaluated as a whole and in part through mea-
surable performance indicators, focusing on real-world deployment constraints

such as robustness, responsiveness, and generalization.

The overall methodology is structured around the following components:
* Dependent Variables:

— Grasp Success Rate: Percentage of successful grasp attempts, defined
by the ability of the robot to lift and transport the object without slip-
page, in line with RQ1.

— Pipeline Latency: Total execution time from prompt input to grasp ex-
ecution, mapping to RQ2.

- Planning Time: Time taken by MTC to generate and solve the grasp
and post-grasp tasks, inferring RQ3

* Independent Variables:

— Object Diversity: The system was tested across a range of object shapes,
sizes, textures, and physical configurations (e.g., standing, lying down,
partially occluded). This variable reflects the system’s ability to main-
tain robustness and generalization across geometrically and visually
diverse inputs.

— Scene Complexity: Presence of occlusions, clutter, or partial views.

— Prompt Complexity: Ambiguity or descriptiveness of the object prompt
(e.g., "mug” vs. “blue cylindrical container”).

The goal of the evaluation is not to test formal statistical hypotheses but to
verify whether the system exhibits functional robustness under variation in ob-
ject characteristics, scene layout, and prompt input. Each module is indepen-
dently designed for zero-shot inference, enabling the overall pipeline to gener-
alize without explicit object-level training. The emphasis is placed on general-

ization, modular reliability, and qualitative behaviour across edge cases.

Chapter 4 will detail the experimental protocol, including test repetitions, and
success/failure thresholds. This design ensures that the engineering outcomes
of the GAM pipeline can be interpreted within a reproducible, empirical frame-

work.

41

3.1. SYSTEM ARCHITECTURE & CONTROL STRATEGY

EXPERIMENTAL INSTRUMENTS AND LOGGING

To support performance validation and real-time debugging, GAM integrates
several diagnostic and data logging tools, each mapped to a specific inference
module. These instruments serve both for qualitative inspection (e.g., RViz vi-

sualizations) and quantitative analysis (e.g., timing, success logs).

ViIsSuALIZATION TooOLSs

* RViz Topic:

debug_binary_mask and debug_annotated_image: Visualizes segmen-
tation mask produced by GSAM;

transformed_cloud: Shows the alighed and reconstructed point cloud;

grasp_pose: Displays candidate grasp poses as PoseStamped mes-
sages.

grasp_pose: shows the best found solution if the Task is created suc-
cessfully.

* Simulation & Testing Framework (Gazebo):
— The Gazebo simulator was used extensively during development to

evaluate and tune pipeline components before deployment.

— It provides a controlled environment for iterating on motion plan-
ning, perception reliability, and error recovery under repeatable con-
ditions.

— Tiago deployment
— ROS2 Logging:

+ Pipeline data (e.g., images, point clouds, planning scenes) was
also logged during trials.

DeBuG UTILITIES
¢ BT-based status codes to trace pipeline progress and failures.

¢ Feedback added to each ROS2 node execution to evaluate each stage’s re-
sult.

Together, these tools form the experimental backbone of Chapter 4’s eval-
uation, ensuring the GAM pipeline’s behaviour can be audited, repeated, and

quantitatively assessed across trials.

42

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

BT ExecutioN AND ROS2 SErRVICE COORDINATION

This section describes how the practical implementation of the GAM pipeline
leverages the ROS2 ecosystem for distributed communication and the Behav-
iorTree.CPP library for orchestration. The implementation emphasizes launch-
time setup, action interfacing, BT construction, service invocation and modular

extensibility.

The architecture is initialized via two dedicated ROS2 launch files. The gam_server.launch.py
script is responsible for deploying all pipeline stages, instantiating, with all the
parameters required by each component:

e Detector,
¢ 3D Reconstructor,
* Grasp Pose Detector,

e Action Server.

Each server loads its model and configuration (e.g., gsam_params.yaml, gpd_config.yaml)
during launch, ensuring readiness for low-latency runtime inference. Once the
setup is complete, the gam_client.launch.py file spawns a client node that re-
trieves a user-defined object label (object_type in script 3.1), by command line,
and transmits it as a goal to the GAM action server by invoking the send_goal
function defined in code 3.1.
def send_goal(self, object_type: str) -> rclpy.task.Future:

goal _msg = GamMsg.Goal ()
goal_msg.object_type = object_type

self.get_logger () .info(f"Sending Goal: [{object_typel}]\n")

return self._action_client.send_goal_async(goal_msg)

Code 3.1: send_goal function implementation

Upon receiving the goal, the GAM action server stores the object_type in the
root blackboard of the BT, done by the line at 3.2, and begins “ticking” from the
tree’s root node in the loop implemented in code 3.3.

Code 3.2: Storing object_type on the Blackboard

43

3.1. SYSTEM ARCHITECTURE & CONTROL STRATEGY

Feedback messages are published throughout execution, reflecting the pipeline’s
status node (Code 3.3). If the BT terminates with SUCCESS, the result is extracted
from the blackboard and returned to the client; if not, the pipeline aborts with a
FAILURE status.

BT::NodeStatus tree_status = BT::NodeStatus::RUNNING;
while (rclcpp::ok() && !BT::isStatusCompleted(tree_status)) {
tree_status = tree_->tickOnce();

fb->feedback = "Tree status: " + BT::toStr(tree_status);
goal_handle->publish_feedback (fDb) ;

Code 3.3: Ticking of the BT

The tree structure itself is defined in an external XML file (e.g., tree.xml) fol-
lowing the BT.CPP format. Figures 3.1-3.2 illustrate that nodes are organized
into a Sequence, with nested fallback and retry strategies using decorators like
RetryUntilSuccessful with a specified number of maximum attempts (e.g.,
in this case 3). At runtime, each BT node retrieves its necessary input argu-
ments from the blackboard and sends a service request to its paired ROS2 service
server. The server performs the inference or action, then returns the response,
which the node writes back to the blackboard. This cyclic exchange ensures con-
tinuous synchronization of intermediate results and clean modular separation
between stages. An “entry” of the blackboard is a key/value pair; an Input port
can read an entry in the blackboard, whilst an Output port can write into an
entry. The key specifies the name of the stored information, while the value can
be any type of variable [12].

The bt_register_manager.cpp dynamically register BT nodes via
the BT_REGISTER_NODES macro, enabling runtime matching of XML-defined nodes
to C++ logic, done by Code 3.4. This allows nodes to be defined in the XML tree
with only a symbolic name and matched to the underlying class logic at run-
time. This design guarantees reusability and flexibility: replacing a model or
modifying inference behaviour requires only updating the class or XML node

name, without altering the core BT execution logic.

44

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

1 BT_REGISTER_NODES (factory)

2

3

4

S

{

factory.registerNodeType<gam: :LookTable>("LookTable");
factory.registerNodeType<gam::Detector>("Detector");
factory.registerNodeType<gam::0bjectReconstructor>("
ObjectReconstructor");
factory.registerNodeType<gam: :DetectGrasp>("DetectGrasp");
factory.registerNodeType<gam::PlanningSceneHandler >("
PlanningSceneHandler") ;
factory.registerNodeType<gam::MovePreGrasp>("MovePreGrasp");
factory.registerNodeType<gam::MoveGraspObject>("MoveGraspObject");
factory.registerNodeType<gam: :MovePostGrasp>("MovePostGrasp") ;

Code 3.4: Registration of BT nodes

Finally, the getFactoryInstance () utility returns a globally accessible BT fac-

tory, shown in Code 3.5, used to instantiate trees from XML definitions, where in

the script 3.6 is defined as tree_path. This factory is initialized once and cached

for reuse, accessed in the action server as shown in the implementation 3.6:

// Return the ptr of the global factory to allow

// to instanciate the same tree in any file

BT::BehaviorTreeFactory & getFactoryInstance ()

{

static BT::BehaviorTreeFactory factory;

static bool initialized = false;

if (linitialized) {
BT_RegisterNodesFromPlugin (factory) ;
initialized = true;

}

return factory;

Code 3.5: Enabling the BT to be globally accessible

auto & factory = gam::utils::getFactoryInstance();
tree_ = std::make_shared<BT::Tree>(factory.createTreeFromFile(

tree_path));

Code 3.6: Creating the BT from XML definitions

45

3.2. PERCEPTION

To promote extensibility and accommodate changes in tree structure without
duplicating core logic, the GAM action server inherits from an abstract base
class (GAMBaseServer). This templated class encapsulates essential setup rou-
tines, including tree loading, parameter declaration, and action lifecycle call-
backs. Derived implementations, such as GAMServer, override only the execute()
method to define task-specific behaviours—e.g., how the goal is interpreted and
how BT execution status is tracked. This abstraction promotes separation of
concerns, enabling the reuse of common logic across experiments with alter-
native tree configurations or manipulation tasks, while leaving the high-level

control structure intact.

To ensure maintainability and modularity across the ROS2 workspace, the
GAM system is organized into distinct ROS2 packages. The gam_server pack-
age encapsulates the action server logic, including the loading and execution
of BT, while the gam_bt package contains all custom BT node definitions along
with their registration logic through the bt_register_manager 3.4. This sep-
aration reinforces the architecture’s modular design by clearly distinguishing
control flow orchestration from task-specific execution logic. It also simplifies
future extensions—such as integrating new planners or replacing detectors—
by localizing changes to specific packages without disrupting the system’s core
behaviour.

Through this layered and modular orchestration strategy, the GAM pipeline
achieves robust coordination of heterogeneous components, decoupling percep-
tion, planning, and control into testable service units while maintaining global
task coherence via the blackboard and BT execution loop. This architecture sup-
ports extensibility (e.g., adding fallback planners), reusability (e.g., swapping
the grasp planner node), and fault tolerance (e.g., retrying failed stages), align-
ing with the system-level requirements of real-world service robotics.

PERCEPTION

Perception is the first and foundational stage of the GAM pipeline. It serves to
extract semantically meaningful information from raw sensory inputs—specifically,
RGB images. This module bridges the gap between abstract textual input and

spatially grounded object representations that downstream modules can use for

46

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

planning and manipulation. It directly addresses RQ1, which investigates the
extent to which prompt-driven perception can generalize to real-world object

identification under constrained computational resources.

The perception module transforms abstract textual prompts (e.g., “the apple”)
into spatially grounded masks using GSAM, a hybrid framework combining
Grounding-DINO’s open-vocabulary detection with SAM’s segmentation preci-
sion. This addresses RQ1 by enabling zero-shot generalization to novel object

without GPU acceleration. The outputs of this module include:

* Abinary segmentation mask that localizes the object corresponding to the
prompt, used in the following stages,

* The RGB image from the robot’s perspective at the moment of detection
(for debugging purposes),

* A filtered point cloud (referred to as the “full_seen_cloud”) that pro-
vides geometric context for 3D reconstruction.

The perception task is executed in a ROS2-compliant pipeline through a mod-
ular service-based structure, summarized in Fig 3.3. When the BT node cor-
responding to object detection is ticked, it triggers a ROS2 service call to the
detection module, passing the RGB image (robot’s POV) and the object_type
prompt retrieved from the blackboard. Internally, the detector processes this in-
put by executing the GSAM model stack and returns both the binary mask and

an annotated debug image to assist in verification.

Robot POV

SAM

Figure 3.3: Perception Pipeline: The robot RGB point of view (POV) and the
object_type are fed to Grounding-DINO, whici will produce the bounding box
with the confidence score that serves as input for SAM, that produces the binary
mask.

47

3.2. PERCEPTION

Crucially, the perception system is implemented to be resilient and respon-
sive. Itemploys retry strategies within the BT (via decorators such asRetryUntilSuccessful)
to handle cases where the object is not initially visible or partially occluded.
Moreover, before moving forward in the pipeline, the BT node ensures that the
mask aligns with a sufficiently dense point cloud—thus enforcing a consistency
check between semantic segmentation and geometric observability.

From an architectural standpoint, the perception module exemplifies GAM’s
design philosophy: task-driven inference that is modular, reusable, and grounded
in real-time ROS2 communication. It transforms abstract task goals into action-
able data structures and serves as a semantic anchor for subsequent modules

like 3D reconstruction and grasp pose detection.

Section 3.2.1 details the implementation of this perception module, focusing
on how the BT node interfaces with ROS2 services, acquires live sensory input,
and verifies inference quality before setting results to the BT blackboard.

PERCEPTION MODULE IMPLEMENTATION

The implementation of the perception module in the GAM pipeline leverages
a ROS2-compliant structure composed of a BT node acting as a service client
and a corresponding ROS2 service server responsible for running the actual de-
tection and segmentation models. This section outlines the key implementation
details of this module, emphasizing modular design, runtime robustness, and
integration with the rest of the pipeline.

The BT node responsible for perception, named Detector, is implemented as

a synchronous action node. When ticked, the node retrieves two inputs from
the ROS2 ecosystem: an RGB image and a depth-aligned point cloud from the
topics:

¢ /head_front_camera/rgb/image_raw;

¢ /head_front_camera/depth_registered/points.

Together, these represents Tiago’s current visual (POV) and geometric under-
standing of the environment. These inputs are stored in local buffers (table_rgb_

and full_seen_cloud_) via callback subscriptions to ensure that the data is cur-

rent at the time of inference.

48

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

The node constructs a request message containing the RGB image and the ob-
ject prompt retrieved from the blackboard. This request is sent to the detector_service,
a ROS2 service server implemented in Python. The server executes the detection
pipeline using the GSAM model, comprised of Grounding-DINO and SAM, and
returns a binary mask (Fig. 3.4c) corresponding to the segmented object, along
with an annotated debug image (Fig 3.4b).

<

=~

(a) Robot POV (b) Annotated image (c) Binary mask

Figure 3.4: Grounded-SAM stages.

To ensure data integrity, the BT node validates the response before proceed-
ing. Specifically, it checks, for each pixel-point pair, whether the segmented ob-
ject region (white pixels in the mask_) contains sufficient geometric information
corresponding to the masked object (points in the cloud aligned with the mask)
by evaluating whether the point cloud density within the mask meets a mini-
mal threshold (e.g., 80%)—using the utility function cloudFillsMask() used in
Code 3.7 which implements the logic in equation 3.1.

white pixels in the mask_

> 0.80 (3.1)

Density = — - -
Y= % points in full_seen_cloud_ aligned with the mask

If the mask does not align with a sufficiently populated region of the point
cloud, the node retries the inference by spinning until satisfactory data is re-
ceived, as shown in Code 3.7. This check is crucial to prevent propagating in-
complete or noisy cloud data to the reconstruction module.

1 while (lutils::cloudFillsMask(this->full_seen_cloud_, this->mask_)) {

2 rclcpp::spin_some (this->node_) ;

3 };

Code 3.7: Assuring consistent point clouds

49

3.3. 3D RECONSTRUCTION

Successful outputs are then written back to the blackboard for downstream
modules to consume. These include:

¢ The binary segmentation mask (mask_ in code 3.7),
¢ The RGB image at the time of detection (table_rgb),

¢ Thevalidated full point cloud used for context and filtering (full_seen_cloud_
in code 3.7).

On the server side, the detector service is initialized in the gam_detector
package. It loads the GSAM model stack, including relevant configuration pa-
rameters such as encoder version and detection thresholds. Upon receiving a
request, the service decodes the image, performs detection and segmentation,

and packages the result into a ROS2 service response.

To support debugging and monitoring, the server publishes the binary mask
and annotated image (Fig.3.4b) to the topics debug_binary_mask (Fig.3.4c) and
debug_annotated_image. These allow developers to visually inspect the quality
of detections during runtime.

The perception module is designed to be modular and reusable. Its imple-
mentation in a standalone package with clean ROS2 service interfaces allows it
to be reused across different tasks or replaced by alternative detection backends
with minimal integration overhead. The BT node can be redirected to a different
service name or configured to use alternative sensory topics with trivial adjust-
ments.

This tightly coupled but decoupled-by-design implementation aligns with GAM’s
architectural goals: it supports generalization to different tasks and scenes (RQ1)
while maintaining robustness and system coherence under real-time conditions.

The Perception module’s output serves as the foundation for 3D Reconstruc-
tion. By converting semantic masks into dense geometric representations, this

stage directly addresses RQ2’s precision-efficiency trade-offs.

3D RECONSTRUCTION

Following the perception stage, the GAM pipeline transitions into 3D recon-

struction, where a semantically segmented object is transformed into a dense

50

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

3D representation suitable for geometric reasoning. This module takes as input
the output of the perception system and produces a filtered and transformed
point cloud that serves as the basis for grasp pose detection. As such, it directly
addresses RQ2 by enabling efficient, high-fidelity object reconstructions even

under limited sensing and computational constraints.

The 3D Reconstruction stage transforms semantic masks into actionable geo-
metric representations using MCC (Multiview-Compressive-Coding introduced in
the section 2.3.4). By inferring occluded surfaces and aligning outputs to the
robot’s operational frame, this stage directly addresses RQ2’s demand for ef-
ficient, high-fidelity reconstructions under hardware constraints. The module
executes the MCC pipeline by fusing the image, mask, and visible point cloud
into a format suitable for reconstruction. MCC internally performs preprocess-
ing steps like normalization, masking, cropping, padding, and resampling to
prepare consistent input tensors. The output is a dense, coloured point cloud
that represents the reconstructed object surface, along with a centroid used for
spatial alignment. In the Fig. 3.5is shown the seen point cloud of the robot placed
in front of a desk with the goal of grasping a “mug”. In the picture is evident the
absence (grey background) of multiple points that compose the 3D representa-
tion of the mug. The MCC’s output is visible in Fig. 3.6a: the coloured points
represents the 3D reconstruction spatially aligned. Fig. 3.6b, instead, displays
the same output with increased granularity.

Figure 3.5: Seen point cloud.

51

3.3. 3D RECONSTRUCTION

(a) MCC’s output, granularity=0.05 (b) MCC'’s output, granularity=0.1

Figure 3.6: 3D Reconstructed mug, output examples.

Importantly, this module enforces a consistency check between the mask,
the image, and the point cloud dimensions before triggering inference. These
checks ensure that the reconstruction task is not performed on corrupted or mis-
matched input, thereby preventing downstream failures. Moreover, the output
point cloud is spatially transformed using the centroid of the segmented region

to maintain proper alignment with the robot’s base frame.

From a system design perspective, this module exemplifies GAM’s architec-
ture principles: inference is triggered reactively within the BT, but the logic
and model execution are encapsulated in a dedicated ROS2 service. This de-
couples control from computation, allowing the reconstruction strategy to be
swapped or refined independently of the task policy. Section 3.3.1 presents
the implementation-level details, highlighting the role of ROS2 service messag-
ing, data validation routines, and the interplay between BT node execution and

model inference logic.

3D RECONSTRUCTION MODULE IMPLEMENTATION

The 3D reconstruction module is implemented through a dedicated ROS2 ser-
vice node and a corresponding BT node that acts as a client. This implemen-
tation, housed within the gam_3d_reconstructor and gam_bt packages respec-

tively, demonstrates modular inference integration in a distributed architecture.

The BT node ObjectReconstructor is triggered once the output from the per-
ception stage (mask, RGB image, and point cloud) is available on the black-

52

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

board. Upon activation, the node retrieves these data entries and performs an
initial validation: it checks that the image, mask, and point cloud dimensions
are aligned to prevent malformed requests. If the check passes, it constructs a
request message and invokes the reconstructor_srv, a ROS2 service exposed
by the Python-based ReconstructorService node.

The service server uses a deep learning pipeline based on MCC. The input

consists of:

* A RGB image (Tiago’s POV),
* A binary mask (object to grasp),

* A registered point cloud aligned to the robot’s depth camera (seen point
cloud).

These inputs are pre-processed by the service to generate a dense point cloud
representing the overall shape of the object, as shown in the Fig. 3.7. Internally,
MCC converts the raw sensory data into tensors and normalizes them to account
for viewpoint and scale factor as shown in Code 3.8. It predicts unobserved sur-
faces by fusing appearance and geometry cues, ultimately generating a complete
3D object representation.

Figure 3.7: 3D Reconstructed shape of a mug. Output of MCC having in input
the binary mask, the RGB image aligned with the mask, and the seen point cloud
(as depicted in Fig.3.5).

53

3.3. 3D RECONSTRUCTION

Once reconstruction is complete, the service returns:
¢ A reconstructed point cloud (as a PointCloud2 message),

¢ The spatial centroid of the object cloud (centroid_src in the 3.8), defining
the object’s position with the respect to Tiago.

1 self.centroid_src = seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].
mean (axis=0)
2 self.scaling = (seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].var(

dim=0) ** 0.5) .mean()

Code 3.8: Scaling and centroid factors” computation

On the client side, the BT node applies a geometric transformation to the re-
constructed cloud, using the centroid, to align it with Tiago’s base frame. The
centroid is determined by computing the average of all the points’ coordinates
(x-y-z for each point), resulting in the position of the object’s center with the re-
spect to Tiago, advertised in Code 3.8. The transformed cloud is then published
to a ROS2 debug topic for visualization and written to the blackboard under the

key object_cloud, making it accessible to subsequent stages.

The BT node also ensures that runtime failures (e.g., missing data, reconstruc-
tion errors, transformation issues) result in a FAILURE status. Additionally, if
the reconstructed point cloud contains fewer than a threshold number of points
(e.g., 600), the node retries the inference, as the MCC model—due to its non-zero
temperature? parameter—can yield different reconstructions across runs. This
mechanism is essential for the tree’s fallback logic, allowing recovery behaviours

to activate if necessary.

This tightly integrated design illustrates GAM’s architectural goals: model
encapsulation through services, runtime data verification, and modular ROS2
interoperability. By isolating 3D reconstruction logic in a dedicated package
and exposing it through a service interface, the system ensures clean abstraction
boundaries and ease of future upgrades (e.g., swapping MCC with an alternative

model or fine-tuning).

2Temperature (T) in MCC scales logits to control output randomness across multiple runs:
higher values (T >1) soften probability distributions (increasing diversity), while lower (T <1)
values sharpen predictions (enhancing confidence).

54

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

GRASPING POSE DETECTION

The grasp pose detection module constitutes the fourth stage in the GAM
pipeline, bridging the output of the 3D reconstruction with the motion planning
logic that follows. Its primary objective is to generate a set of geometrically valid
and executable grasp candidates based on the object’s reconstructed shape and
spatial orientation. This stage directly contributes to RQ2 by addressing how
grasp precision and runtime responsiveness can be preserved despite noisy in-

puts and constrained computational budgets.

Building upon the geometric information reconstructed in the previous stage,
this module infers stable, kinematically feasible® grasp configurations that the
robot can execute. In doing so, it serves as a key link between perception-driven

object understanding and motion planning.

Grasp pose detection in GAM is grounded in the use of geometry-centric in-
ference, specifically designed to operate on dense, partially reconstructed point
clouds. This approach is essential for scenarios where complete object models
are unavailable or where the target object may be novel, cluttered, or partially
occluded. The module aims to identify a set of 6-DOF grasp poses—each speci-
tying both position and orientation of the gripper—that maximize the likelihood

of a successful grasp, based purely on spatial geometry and contact heuristics.

To achieve this, GAM integrates the Grasp Pose Detection (GPD) algorithm,
analysed in the section 2.4.4, a model known for its ability to detect robust grasps
directly from raw 3D point clouds. Unlike template-based or model-dependent
approaches, GPD does not rely on predefined object meshes, making it inher-
ently suitable for generalization to unseen items [46]. It analyses local point
cloud neighbourhoods to identify geometries conducive to paralleljaw grip-
per stability, scoring candidates based on reachability and collision-avoidance
metrics. Figure 3.8 illustrates the output of a GPD module for a representative
”“cylinder” object. In this case, Fig. 3.8a depicts a subset of n = 4 candidate grasp
poses, Fig. 3.8b expands the set to n = 15, while Fig. 3.8c visualizes a inference

3“Kinematically feasible” refers to a motion, configuration, or action that is physically
achievable by a robotic system without violating its mechanical constraints.

55

3.4. GRASPING POSE DETECTION

output with n = 30 grasp hypotheses. The predicted grasps are color-coded
according to their confidence scores, with green representing high-likelihood
(high-quality) grasp configurations and red indicating lower-confidence or sub-
optimal candidates, as evaluated by the GPD model’s internal scoring function.

(a) n=4 (b) n=15 (c) n=30

Figure 3.8: GPD output on a reconstructed cylinder point cloud.

From a pipeline standpoint, the output of the 3D reconstruction module serves
as the input to this stage: a segmented point cloud centred on the object of in-
terest. The grasp detection process then samples candidate regions, evaluates
their surface features, and ranks viable poses according to their grasp success
probability. These candidates form the semantic foundation for downstream
motion planning, providing both flexibility (through multiple grasp options)
and adaptability (by enabling fallback strategies if some poses fail to execute).

Critically, this module reinforces GAM’s architectural principles: it is modu-
lar, stateless between ticks, and driven by on-demand inference. To ensure ro-
bustness, the pipeline supports fallback mechanisms within the BT: if no valid
grasps are returned, retry logic is triggered automatically. This mechanism al-
lows the robot to reprocess the input cloud or re-run modules to recover from

ambiguous or noisy sensing conditions.

As such, the grasp pose detection module exemplifies the GAM philosophy
of responsive, task-aware manipulation. It transforms dense spatial data into
concrete control objectives while maintaining modularity and generalization ca-
pabilities. Section 3.4.1 will present the implementation details, including ROS2
service interfacing, BT integration, and data validation mechanisms employed

during runtime execution.

56

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

GRASPING POSE DETECTION MODULE IMPLEMENTATION

The implementation of the grasp pose detection module in the GAM pipeline
follows a modular and service-oriented design, consistent with the architectural
principles established in previous stages. The module spans two ROS2 packages:
gam_bt, which houses the DetectGrasp BT node acting as the service client,
and gam_grasp_detector, which implements the service server responsible for

executing the GPD algorithm.

The BT node DetectGrasp is triggered once the reconstructed object point
cloud becomes available on the blackboard. Upon ticking, the node first ver-
ifies that the cloud is present and valid. It then constructs a ROS2 service re-
quest, populating it with the object cloud produced by the 3D reconstruction
module. This request is sent to the detect_grasp_service, a dedicated ROS2

service node responsible for executing the grasp detection logic.

On the server side, the GraspDetectorService is initialized, as shown in Code
3.9 during system launch and configured with a YAML-based parameter file
(“gpd_config.yaml” in the script 3.9) defining detection-specific thresholds, model
weights, and runtime configurations.

1 declare_parameter<std::string>("gpd_params", gam_grasp_detector/
config/gpd_config.yaml") ;
config_path_ = get_parameter ("gpd_params").as_string();

3 gpd_detector_ = std::make_shared<gpd::GraspDtector>(config_path_.
c_str());

Code 3.9: Initialization of the Grasp Detector server

Internally, it wraps the GPD library, initializing it with the provided parame-
ters and exposing its functionality via a ROS2 service interface. Upon receiving a
service call, the node converts the ROS2 PointCloud2 message into a Point Cloud
Library-compatible (PCL) format, initializes the GPD input cloud, and performs
local geometric analysis to detect candidate grasps.

The GPD pipeline preprocesses the point cloud, filtering noise and extracting

surface normals, before generating a set of grasp hypotheses, as seen in Code
3.10. These are evaluated against a set of geometric criteria—such as gripper

57

3.4. GRASPING POSE DETECTION

clearance, contact surface area (number of contact points), and antipodal grasp
quality.

std::vector<std::unique_ptr<GpdHand>> gpd_poses = this->gpd_detector_
->detectGrasps (*gpd_cloud);

Code 3.10: Grasp detection line

Valid candidates are converted into ROS2 PoseStamped messages, using the convertGrasps ()

utility function, and returned in the service response. If no candidates are found;
some of the poses are not feasible; or some conversion errors is caught, the
result field is set to false, triggering a FAILURE status on the BT side and en-
abling fallback mechanisms, as laid-out in Code 3.11.

// Convert from GPD poses to ROS PoseStamped msgs

if (!gam::utils::convertGrasps(gpd_poses, pose_msgs)) {

return false;

Code 3.11: Detected grasps validation

Back in the BT node, the response is parsed to extract the array of valid grasp
poses. These are then:

¢ Written back to the blackboard under the key grasp_candidates for down-
stream access.

¢ Optionally published to the ROS2 grasp_pose topic for real-time RViz vi-
sualization, assisting in runtime debugging and validation, as illustrated
in Fig. 3.9 the grasp hypothesis is represented by the purple arrow as ap-
proaching vector with the respect to the Tiago’s base frame.

During early integration, the GPD module was initially configured to oper-
ate solely on the reconstructed object point cloud. However, empirical observa-
tions revealed that many predicted grasps exhibited arbitrary approach vectors,
including directions from beneath the table surface or from the far side of the
object—areas that were kinematically unfeasible. To mitigate this, the configu-
ration parameters were tuned to favor approach vectors along a diagonal bias,
prioritizing directions from above and in front of the object with respect to the
robot’s base frame. While this directional constraint improved semantic align-
ment with the robot’s workspace, it did not fully eliminate collisions with the
supporting surface, particularly for low-profile or flat objects.

58

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

Figure 3.9: RViz representation of a grasp and Tiago aiming to reach the pre-
dicted pose with its end-effector. The orange arm resembles the actual position
in the simulation, while the arm performing the grasp is the MTC plan visual-
ization.

To address this, an additional pre-processing step was introduced: a local
spatial neighborhood around the object was extracted by selecting all points
within a fixed radius 7" from the object centroid and appending them to the
reconstructed cloud (in Fig.3.10 are seen as orange points). This contextual aug-
mentation enabled the GPD algorithm to better infer the presence of the table-
top and avoid generating grasp poses from underneath or too close to the sup-
port surface. The outcome was a notable improvement in grasp quality and
feasibility—grasps were now more consistently aligned with the robot’s kine-
matic constraints and less prone to planning rejections due to collision. As il-
lustrated in Figures 3.10a-3.10b, the detected grasp vectors, in case of grasping
a joystick and a cylinder, exhibit both correct approach orientation and spatial
clearance from the table plane, validating the efficacy of this enhancement.

As with previous modules, this node is stateless between ticks and fully en-
capsulated. It employs internal error handling and timeout monitoring to en-
sure system responsiveness. Moreovet, retry decorators within the BT allow for
multiple detection attempts in case of transient failures (e.g., due to sparse or
occluded input clouds).

59

3.5. PLANNING SCENE HANDLER

(a) Joystick (b) Cylinder

Figure 3.10: Predicted grasp poses with improved GPD’s input cloud.

This implementation ensures that the grasp detection logic remains cleanly
separated from both perception and planning modules while maintaining in-
teroperability through standardized ROS2 service interfaces. It reinforces the
pipeline’s commitment to reusability, runtime robustness, and inference-driven
decision-making. As such, the grasp pose detection module not only opera-
tionalizes the GPD algorithm within the GAM context but does so in a manner
that is extensible, interpretable, and aligned with the broader system architec-
ture lying down the foundation for Motion Planning, debated in the following

sections.

PLANNING SCENE HANDLER

Accurate scene representation is a prerequisite for any reliable motion plan-
ning system. In the context of the GAM pipeline, this requirement becomes even
more critical: the system is designed to operate in unstructured environments
and to generalize to arbitrary, previously unseen objects. Consequently, tradi-
tional voxel-based approximations—commonly used to populate the planning
scene in standard robotic applications—are inadequate. They lack the preci-
sion required to safely and effectively plan fine-grained manipulation motions

around novel object geometries.

To overcome this limitation, the GAM framework explicitly integrates a high-

fidelity object mesh, as visible in Figure 3.11, into the planning scene prior to

60

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

trajectory generation. This design choice strengthens the coupling between per-
ception and planning: it allows the motion planner not only to be informed of
the presence of an object but also to “see” its exact shape and position, enabling
collision-aware, object-specific trajectory synthesis.

Figure 3.11: Object mesh, generated from a mug reconstructed point cloud (black
points).

More specifically, the reconstructed point cloud obtained from the 3D Re-
construction module (Section 3.3) is transformed into a watertight triangular
mesh. Once generated, the mesh is inserted into the Movelt2 Planning Scene
as a collision-object. Its pose is anchored using the centroid computed during
MCC pre-processing, ensuring spatial alignment between the virtual mesh and
the physical object in the robot’s workspace.

Before inserting the object mesh, the Planning Scene is sanitized. The pipeline
ensures that all previously inserted objects are removed before populating the
scene with the current target. This is crucial for maintaining temporal coherence
and avoiding planning artifacts in the scene—especially when the GAM pipeline
is triggered multiple times during a multiple grasping-tasks or when successive
goals are issued. At any point, the only non-static object explicitly modelled in
the scene is the one currently targeted for grasping.

61

3.5. PLANNING SCENE HANDLER

By anchoring the mesh to the MCC-computed centroid and sanitizing the
planning scene, GAM ensures kinematic feasibility and temporal coherence.
This enables MTC to generate collision-aware trajectories (e.g., avoiding gripper-
object collisions) while sticking to the Tiago’s mechanical constraints, operating
on an accurate world model; as an exaple in Fig. 3.9 is visible a cylinder mesh in-
serted in the Tiago’s Planning Scene. This enables not only improved planning
efficiency and safety but also enhances the robot’s ability to execute grasps in
cluttered or constrained environments. Section 3.5.1 will detail how this inser-
tion process is practically implemented and synchronized with the BT execution
cycle.

PLANNING SCENE HNALDER IMPLEMENTATION

The practical implementation of the planning scene handler within the GAM
pipeline is realized through a dedicated BT node named PlanningSceneHandler.
This node, implemented in the gam_bt package, orchestrates the full process of
converting the reconstructed object point cloud into a mesh and integrating it
into the Movelt2 Planning Scene. The implementation holds strictly to the mod-
ular principles of ROS2 and BT, enabling repeatable, verifiable state transitions
and extensible scene management.

Upon being ticked, the BT node performs three critical stages: data retrieval,
mesh computation, and planning scene update. First, it acquires from the
blackboard the inputs required for mesh generation: the reconstructed object
cloud (object_cloud), its centroid (object_position), and the corresponding
label (object_type). These entries are prerequisites, as the centroid enables spa-
tial alignment and the label ensures unique identification of the object in the
Planning Scene.

Poisson Surface Reconstruction (Figure 3.11) was selected as the primary
meshing method [2], implemented in Code 3.12. This method was chosen for
its robustness in reconstructing watertight meshes from noisy or sparse point
clouds. The pipeline also supports alternatives such as Alpha Shapes [2] and
Greedy Projection Triangulation [32] (examples depicted respectively in Fig.
3.12a-3.12b) but Poisson yielded the best trade-off between smoothness, mesh

weight, completeness, absence of artifacts, and computational cost that are es-

62

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

sential for reliable collision modelling. During the reconstruction, low-density
polygons are filtered using a vertex neighbourhood density threshold (e.g., 10

neighbours within 5c¢m), removing outliers and mesh artifacts improving the

planning precision.

(a) Alpha Shapes (b) Greedy Projection Triangulation [32]

Figure 3.12: Meshes output on a cylinder object.

pcl::Poisson<pcl::PointNormal> poisson;

pcl::PolygonMesh meshes;

4+ poisson.setDepth(this->depth_);
5 poisson.setInputCloud(cloud_normals);

poisson.reconstruct (meshes) ;

Code 3.12: Poisson Reconstruction implementation

Once the mesh is created, it is converted into a ROS2-compatible shape_msgs: :Mesh
format. The transformation includes translating the mesh vertices using the cen-
troid obtained during MCC pre-processing. This ensures that the mesh is accu-
rately positioned in the world frame, coinciding with the robot’s current under-
standing of the object’s location. The converted mesh is then published as a
CollisionObject to the Planning Scene using the apply_planning_scene ROS2
service used in Code 3.13.

63

3.5. PLANNING SCENE HANDLER

PlanningSceneMsg ps;

CollisionObject co;

co.header.frame_id = this->object_cloud_->header.frame_id.c_str();
co.id = this->object_type_.c_str();

co.meshes.push_back (*mesh) ;

co.operation = CollisionObject::ADD;

ps.world.collision_objects.push_back(co);

auto request = std::make_shared<PlanningSceneSrv::Request>();
request->scene = ps;
auto result_future = ps_client_->async_send_request(request) ;

Code 3.13: Planning Scene update flow

Before insertion, the node calls a utility routine to remove any previously in-
serted objects. This prevents contamination from past executions and ensures
that only the current object is present in the scene, facilitating cleaner motion
planning and grasping attempts. Once the object is added, the system confirms
the update’s success and publishes the new state to RViz for visual confirmation,
as shown before and after the update in the Figs. 3.13a-3.13b.

(a) Before (b) After

Figure 3.13: Planning Scene update.

This implementation encapsulates the GAM pipeline’s focus on precision and
coherence. It transforms perceptual outputs into planning-ready semantic struc-
tures with minimal latency and maximum fidelity. By leveraging service ab-
straction and standard ROS2 messaging, the handler maintains modularity while
aligning with Movelt2’s internal representations. Moreover, by handling mesh

64

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

generation and scene population as a dedicated BT node, the pipeline maintains
clean boundaries between control logic and world modelling—supporting sys-

tem reusability and future model upgrades.

MoTION PLANNING & EXECUTION

The final stage of the GAM pipeline involves the transition from perception-
informed reasoning to action: the physical execution of the grasp. This phase
is responsible for converting spatial understanding into concrete motor com-
mands, ensuring the robot can approach, grasp, and retreat with the object in a
safe and repeatable manner. It directly addresses RQ3, which investigates how
motion planning systems can be structured to remain reactive and safe despite
incomplete sensory feedback and execution uncertainties. Additionally, it con-
tinues to contribute to RQ2 by maintaining robustness in downstream modules

operating on learned geometric representations.

To this end, the GAM system leverages the Movelt Task Constructor (MTC)
framework, introduced in section 2.5.1. MTC enables the composition of high-
level, semantically meaningful manipulation behaviours from modular motion
planning primitives. This modularity aligns with the architectural principles
adopted throughout the GAM design—namely, composability, explicit stage-

wise control, and runtime adaptability.

At a conceptual level, the manipulation sequence could be described as a sin-
gle continuous motion: transition from a “home” configuration to a pre-grasp
pose, execute the grasp, and return to a “home” state with the object secured.
However, this unified approach was deliberately decomposed into three inde-

pendent planning units due to safety and observability constraints.

A key limitation encountered during development was the lack of closed-
loop feedback regarding grasp success. Without tactile sensors or binary grip-
per state validation, the system could not robustly infer whether the object had
been successfully grasped. This ambiguity, if unchecked, could lead to unsafe
motions—such as the robot lifting an un-grasped object, performing a retreat
with an empty hand or re-plan a motion due to an unexpected gripper state. To

65

3.6. MOTION PLANNING & EXECUTION

mitigate these risks and to isolate potential failure points, the grasping pipeline

was split into the following sub-components:

® Pre-grasp Motion (MTC Task): This task orchestrates the motion from
the robot’s “home” position to a pre-grasp pose computed via GPD. It also
includes gripper opening and a forward push to enclose the object within
the gripper jaws. The goal of this phase is to position the robot optimally
for a grasp, without assuming success

¢ Gripper Closure (PlayMotion2 Action): The grasp itself is executed via
a predefined trajectory triggered through the PlayMotion2 interface. This
discrete action simplifies control and introduces a decision boundary: sub-
sequent motion planning is only attempted if the closure completes suc-
cessfully.

* Post-grasp Motion (MTC Task): After the assumed grasp, this task plans
a safe retreat path. It attaches the object within the planning scene, lifts it

using a Cartesian motion*, and ultimately returns the arm to a predefined
“home” configuration. If the object was not secured, this phase would typ-
ically fail at the collision checking or motion execution stage, prompting
fallback behaviours.

This staged design not only improved execution reliability but also facili-
tated more granular debugging and recovery strategies. Moreover, by maintain-
ing clear modular separation, the system remains extensible: future additions
such as grasp validation, increase of the behaviours complexity or tactile sensing
could be seamlessly integrated without disrupting the motion planning logic as

suggested in Section 5.2.

Overall, the motion execution component exemplifies GAM’s emphasis on
operational reliability in real-world scenarios. Through careful architectural de-
composition and robust planning with MTC, the robot can translate abstract
grasp candidates into executable and verifiable action sequences—even in the
absence of full sensory observability. The next section, 3.6.1, will dig into the
implementation specifics of each task, outlining how planning stages were com-

posed and how runtime safety mechanisms were enforced.

“Cartesian motion refers to movement along three perpendicular axes (X, Y, and Z) within a
Cartesian coordinate system.

66

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

TRAJECTORY PLANNING & GRASP EXECUTION IMPLEMENTATION

The execution logic for GAM’s motion planning is divided across three BT
nodes, each implementing a distinct motion primitive in the grasp sequence, all
included in the 1gam_bt package. These are developed using the MTC frame-
work and coordinated via ROS2 services and action clients to preserve the sys-

tem’s modular and reactive design.

PrRE-GRrASP TASK EXECUTION

The first motion primitive is implemented in the move_pre_grasp BT node.
Upon activation, the node retrieves the selected grasp pose—previously com-
puted by the GPD module—and constructs an MTC Task object composed of

several sequential planning Stages:

* Current State Initialization: The Task begins by capturing the robot’s joint
state to anchor planning in the present configuration (Current State in
Fig.3.14).

* Open Gripper: A PlayMotion2 Stage is used to command the end-effector
to open. This ensures the gripper is fully ready before proceeding (Open
hand in Fig.3.14).

* Move to Pick Position: Using a sampling-based planner (OMPL, Section
2.5.2), the robot transitions from its current pose to a predefined “up” pose,
rising its arm “up’ (Unfold Arm in Fig.3.14). This serves as an intermedi-
ate configuration to improve IK feasibility during approach. Kinematic
feasibility is enforced during motion planning via Movelt2’s inverse kine-
matics solver, which discards grasps exceeding the Tiago’s joint limits or
workspace (Compute IKin Fig.3.14).

* Allow Collisions: Collisions between hand-object are allowed to let the
planner validate plans that let the end-effector touch the object (A1low collision
hand-object in Fig.3.14). This is required since GPD would reject all the
plans that are in collision. Allow collision hand-octomap (in Fig. 3.14)
is implemented to mitigate the drop of plans where gripper would hit the
table. Adding this Stage once the IK is found, thus when the gripper is
already in close to the object, would prevent safety issues or collision plans.

* Approach to Grasp Pose: The selected grasp pose is translated into a Carte-
sian trajectory using the MTC Connect stage, with constraints on positional
and angular tolerances. The motion is planned relative to the robot’s base
frame (Approach bowl in Fig.3.14).

67

3.6. MOTION PLANNING & EXECUTION

Figure 3.14: MTC’s output of pre-grasp Task in case of grasping a bowl.

Figure 3.14 illustrates a representative output of the MTC for a single planning
sequence. The overall task, labeled Grasp task, comprises a sequential pipeline
of motion planning stages. The central indicator displays the number of full so-
lutions identified—in this instance, four valid motion plans—as reflected by the
four in the terminal stage, Approach bowl.The initial stages—Current State,
Unfold arm, and Open Hand—denote deterministic operations that succeed in
all feasible paths, each contributing a single outcome to the overall task flow.
The Grasp container is a composite wrapper stage (described in Section 2.5.1)
that encapsulates a nested grasp planning process: it receives as input a set of
grasp hypotheses—derived from the GPD module—and attempts to compute n
inverse kinematics (IK) solutions for each. In this example, from an initial pool
of 30 candidate grasps, the system identified 9 valid IK solutions. These candi-
dates were subsequently filtered based on feasibility constraints imposed by the
final approach motion: Approach bowl. The last stage of the container evaluates
each grasp’s reachability and motion planning viability, ultimately retaining 4
complete plans that satisfy all geometric and kinematic constraints.

Each stage inherits global planning parameters (velocity/acceleration scal-
ing, planners, and IK resolution strategies) set via a shared node handle. The
resulting plan is validated, then executed through the standard Movelt2 execu-
tion pipeline. A success at this stage indicates the robot is correctly positioned
to close the gripper.

68

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

GRIPPER CLOSURE VIA PLAYMOTION2

Gripper actuation is handled independently through the MoveGraspObject BT
node. This design choice was informed by the absence of grasp success feed-
back. The node interfaces with the PlayMotion2 action server, sending a named
trajectory goal (e.g., “close_left”) depending on the selected (by the planner)
grasping side, in case Tiago++ is performing the grasp. Since the action is state-

less and deterministic, it does not rely on intermediate planning.

This separation offers two primary benefits

1. It minimizes the risk of unsafe planning downstream by ensuring grasp
closure is complete before planning any post-grasp motion.

2. It allows simple future extensions, such as increasing the motion com-
plexity or implementing feedback for grasp validation (discussed in Sec-
tion 5.2).

PosT-GRrASP TAsSk EXEcUTION

The final segment of the pipeline is implemented in the MovePostGrasp BT
node. This stage is responsible for retreating with the object and returning to
the “home” pose, while maintaining grasp integrity. The createTask() 3.14
method constructs a full MTC pipeline with the following components:

* Planning Scene Cleanup:Prior to planning, any previously attached col-
lision objects are removed to avoid interference.

e Attach Object to End-Effector: A Attach bowl Stage, shown in Fig.3.15,
marks the object as attached using the object_type identifier. This ensures
accurate collision checking throughout execution.

e Lift Motion: A Cartesian upward motion lifts the object vertically, com-
puted in the base frame (Lift bowl in Fig.3.15). This reduces the risk of
unintended collisions near the table.

* Collision Filtering: Collision constraints are toggled during motion. First,
hand-object and object-octomap® collisions are temporarily allowed (A11low
collision object-octomap in Fig.3.15), then disabled once the object is in
a safe zone (Dis-allow collision Stages in Fig.3.15).

°>An Octomap is a 3D occupancy grid mapping framework that uses octrees to represent the
environment, thus, the obstacles in the Planning Scene.

69

3.6. MOTION PLANNING & EXECUTION

* Return to Home: (Go home in Fig.3.15)A MoveTo Stage executes a joint-
space trajectory to return the robot to its original configuration.

¢ Detach Object: Upon successful arrival, the object is detached from the
planning scene and removed from collision checking (De-attach bowl in
Fig.3.15).

Figure 3.15: MTC’s output of post-grasp Task in case of grasping a bowl.

Each stage is built to tolerate transient planning failures by fallback paths in
the Behaviour Tree. The node also validates planner outputs prior to execution
and logs the full task status to facilitate debugging and runtime monitoring.

task_.clear ();

task_ = this->createTask();
3 std::shared_ptr<const Solution> best_solution = task_.solutions().
front () ;

task_.introspection () .publishSolution(*best_solution);

task_.printState () ;

Code 3.14: MTC creating a Task and publishing a Solution

ARCHITECTURAL HIGHLIGHTS

Both MTC nodes share a common inheritance from MTCBase 3.14, which ab-
stracts repetitive setup procedures such as planner configuration, node creation,
and planning scene interfacing. Planning is performed using a mix of OMPL
(sampling-based) and Cartesian planners, selected adaptively per Stage. Pa-
rameters such as velocity scaling and planner timeouts are configured via launch-
time YAML files, promoting reusability and ease of tuning.

70

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

Crucially, this decomposition into atomic BT nodes and dedicated MTC tasks

ensures:

* Safety through stage-wise validation and clear decision boundaries,

* Responsiveness by enabling retries or alternative plans at each point of
failure,

* Extensibility by isolating functionality behind well-defined ROS2 inter-
faces.

In aggregate, this implementation fulfills the core operational requirements
posed by RQ2 and RQ3, delivering robust grasping behaviour in the face of

real-world uncertainty.

SUMMARY AND EXPERIMENTAL QUTLOOK

This chapter has outlined the full architectural and implementation spectrum
of the Grasp-Anything-Model (GAM) pipeline, describing how modular percep-
tion, learning-based inference, and reactive motion planning were tightly inte-
grated into a ROS2-based framework for real-world object grasping. Each stage,
from perception to execution, was analysed through both theoretical and practi-
cal lenses, summarized in Table 4, linking the design rationale directly to the re-
search questions RQ1 (generalization under real-world perception constraints),
RQ2 (precision-efficiency trade-offs), and RQ3 (reactive motion control under
incomplete feedback).

The GAM pipeline comprises five core modules, summarized in Table 3.1:

* Perception (Section 3.2): A prompt-driven detection module based on
GSAM, converting natural language prompts into spatially grounded bi-
nary masks using RGB data. This stage handles semantic localization and
loads the spatial reasoning pipeline.

* 3D Reconstruction (Section 3.3): A geometry-aware reconstruction stage
using MCC to synthesize a complete object representation from the partial
(“seen”) point cloud. It outputs a centroid-aligned dense cloud, which
grounds the physical object’s 3D model.

* Grasp Pose Detection (Section 3.4): A geometry-centric inference module
built around the GPD algorithm. It transforms the reconstructed cloud
into a set of ranked grasp candidates using contact heuristics and reacha-
bility metrics.

71

3.7. SUMMARY AND EXPERIMENTAL OUTLOOK

¢ Planning Scene Handling (Section 3.5): A ROS2 BT node that converts the
reconstructed cloud into a Poisson mesh and publishes it to the Planning

Scene, ensuring accurate collision representation for downstream plan-
ners.

* Motion Planning and Execution (Section 3.6): A three-part planning and
actuation system, developed using the MTC framework and PlayMotion2
actions. It decomposes the grasp sequence into modular stages: pre-grasp
positioning, gripper closure, and post-grasp retreat.

Module Function Tool/Model Output
Perception Segments object by prompt GSAM Binary mask
Reconstruction Completes object geometry MCC Point cloud
Grasp Detection Finds 6-DoF poses GPD Set of grasp poses
Planning Scene = Adds mesh to planning scene Poisson + Movelt2 Mesh

Motion Planning Execute grasp MTC + PlayMotion2 Action

Table 3.1: Overview of modules used in the grasping pipeline.

The pipeline is executed via BT that orchestrate inference and planning stages
with modular fallback strategies and real-time reactivity. The blackboard pat-
tern ensures data consistency, while the use of stateless ROS2 services supports

runtime modularity.

Crucially, GAM is realized as a ROS2 workspace structured into seven pack-
ages:
¢ gam_demo: CLI-based action client for initializing the GAM pipeline.
* gam_server: Action server hosting the BT logic and ticking mechanism.
* gam_detector: Service for GSAM-based perception.

* gam_3d_reconstructor: Service wrapping MCC inference for 3D recon-
struction.

* gam_grasp_detector: GPD-based grasp poses detection service server.
e gam_bt: Hosts all BT node definitions, utility classes, and planners.

* gam_msgs: Definitions for shared messages and actions (e.g., GAM.action).
Altogether, this design enables the GAM system to transform a high-level

semantic goal (e.g., “the black mug”) into a sequence of perceptual, inferential,

and kinematic operations that are modular, explainable, and generalizable.

72

CHAPTER 3. RESEARCH DESIGN AND IMPLEMENTATION

With the system architecture and implementation defined, the subsequent
chapter turns toward empirical validation. Chapter 4 evaluates the GAM pipeline

in terms of real-world performance, examining:

* Success rates across object types and scene configurations,

* Runtime efficiency and pipeline latency,

* System responsiveness and failure recovery capabilities,

¢ Limitations encountered during development and deployment.

These evaluations are structured to reflect the research questions defined in
Chapter 1, providing quantitative and qualitative analysis of the GAM system’s

ability to generalize perception, synthesize reliable grasp candidates, and exe-

cute manipulation actions robustly in the face of real-world uncertainty.
Through this evaluation, we aim to substantiate the core hypothesis of this

thesis: that modular, learning-enabled pipelines can bridge the gap between
academic standalone models and reliable real-world robotic behaviour.

73

Results

This chapter presents a systematic evaluation of the GAM pipeline through
both simulation-based and real-world experiments. Building upon the archi-
tectural principles and implementation strategies detailed in Chapter 3, the ob-
jective of this evaluation is to empirically assess the system’s grasping perfor-
mance, planning reliability, and runtime feasibility. The experiments are struc-
tured to validate the design hypotheses introduced earlier, particularly with re-
spect to generalization across novel objects (RQ1), responsiveness under percep-

tual uncertainty (RQ2), and motion planning time via structured task planning

(RQ3).

To this end, the evaluation follows a quantitative engineering-driven method-
ology, focusing on metrics such as grasp success rate, total pipeline latency (in
seconds, unless specified otherwise), and task planning time. Trials were exe-
cuted in two different settings: a controlled Gazebo-based simulation with a
digital Tiago model, example shown in the figure 4.1a, and a physical deploy-
ment using a real Tiago robot (Fig. 4.1b). Each module of the pipeline was
tested individually prior to full-pipeline execution, ensuring staged integration
and validation.

The experiments simulate realistic manipulation tasks in which the robot is
required to identify, reconstruct, and grasp objects of varying shape, size, and
complexity. The input interface consists of natural language prompts issued by
the user, which are grounded through multimodal perception before being con-

75

4.1. EXPERIMENTAL SETUP

/ -
= T
p— ==
- /‘: \
(a) Simulation robot’s POV. (b) Real-world robot’s POV.

Figure 4.1: Experiments environments.

verted into executable motion plans. Success is defined by the robot’s ability to
correctly identify and grasp the object—returning to its “home” configuration
with the object securely in hand.

The results of these experiments offer insight into the viability of GAM as a
real-world grasping system, bridging the gap between high-level generalization
and low-level hardware execution.

This chapter is structured as follows: Section 4.1 outlines the experimental
setup and methodology, including simulation and real-world configurations,
and trial design. Section 4.2 reports quantitative results across the defined eval-
uation metrics, while Section 4.3 discusses performance trends, strengths, and
observed failure modes. Finally, Section 4.4 identifies core limitations of the
current GAM implementation and outlines opportunities for future refinement.
The whole findings are finally summarized in Section 4.5.

EXPERIMENTAL SETUP

SIMULATION ENVIRONMENT

Experiments in simulation were conducted using a Tiago model within a
Gazebo world that replicates a tabletop grasping scenario as noticeable in Fig-
ures 3.4a-4.1a. The simulated environment included a table and various 3D ob-
ject meshes sourced from open-source datasets such as the YCB-SDF [31] and
Ycb-tools [58]. These repositories provide detailed models of common house-
hold items, which were randomly placed on the table in varying orientations

76

CHAPTER 4. RESULTS

and configurations (e.g., upright, lying down, partially occluded, etc.).

Simulation served multiple roles:

* Module Validation: Each stage (e.g., Perception, 3D Reconstruction, Grasp
Detection) was first verified in isolation to ensure expected output.

e Pipeline Integration: After individual validation, the complete pipeline
was tested to assess system-level coordination.

e Iterative DebuggingThe simulation enabled safe repetition and parameter
tuning, especially useful when real-hardware access was limited.

REAL-WORLD DEPLOYMENT

The physical experiments were performed on a Tiago robot (used both Tiago
single arm and Tiago++) equipped with an RGB-D Astra camera [43]. The test
area consisted of a table with one or more objects placed at varying distances and
angles from the robot, examples see, examples are Fig.4.1b and Fig.1.3. Lighting
conditions were kept consistent to ensure image quality and to avoid variability

in segmentation and depth estimation.

The real-world deployment aimed to:

* Validate full-pipeline performance under actual sensor noise and latency:.

* Observe and debug hardware-specific issues, such as misalignment be-
tween RGB and depth points (D).

* Demonstrate the applicability of GAM to real, unscripted interactions.

Before executing the full pipeline, a critical debugging phase addressed a
misalignment issue between the RGB and depth streams of the Astra camera.
This misalignment led to incorrect 3D reconstructions and ultimately poor grasp
targeting. Once resolved, the pipeline produced satisfying and consistent results

in real-world scenarios, though access to the robot was constrained.

77

4.1. EXPERIMENTAL SETUP

Each grasping trial followed this procedure:

1. Therobotis positioned in front of the table, with objects placed either alone
or among distractors.

2. Anaturallanguage prompt (e.g., “the apple”) is issued to initiate the pipeline.
3. The GAM pipeline is triggered via ROS2 action goal.

4. The system performs Perception, 3D reconstruction, grasp pose detection,
planning and execution.

5. A trial is considered successful if the robot returns to the “home” pose with
the object securely in its gripper.

Due to hardware access constraints and time limitations, statistical signifi-
cance testing was not feasible. However, trends were observed across multiple
diverse trials to qualitatively assess performance across object types and prompt

complexities.

As described in Section 4.1, each object was tested over 5-10 trials with var-
ied prompts and spatial configurations. Although the testing did not focus on
a statistically rigorous sampling plan, diversity in object type and pose was em-

phasized to probe generalization.

Prompts varied in specificity and naturalness, such as (with the goal of grasp-
ing a mug):
* "Mug”,
¢ “Blue mug”,
¢ “The object on the right”,

* “The pear” (expecting a FAILURE at detection level).

Objects used in simulation included: shampoo bottle, mug, water bottle,
box, pear, drill and bowl. Those used in real life included: small and tall cylin-
ders, joystick, ball, cube, and mug. Object orientation and occlusion were not

fixed, introducing realistic scene variability.
This experimental framework ensures a representative, if not exhaustive, eval-

uation of GAM’s real-world readiness and robustness to perceptual ambiguity

and physical variance.

78

CHAPTER 4. RESULTS

EVALUATION METRICS & Succiss CRITERIA

To evaluate the effectiveness and practicality of the GAM pipeline, three key
performance metrics were defined, each corresponding to one of the research

questions outlined in Chapter 2:

* Grasp Success Rate (RQ1 — Generalization): Defined as the percentage
of trials in which the robot returned to its “home” configuration while se-
curely holding the object. A grasp was considered successful if, at the
end of the motion execution, the object was visibly retained in the end-
effector without slippage or drop. This metric captures the pipeline’s end-
to-end effectiveness in generalizing to different object types, orientations,
and prompt formulations.

* Pipeline Latency (RQ2 - Responsiveness and Runtime Feasibility): Mea-
sured as the total time elapsed from the moment the user sends a natural
language prompt (action goal) to the completion of the final motion exe-
cution. This includes:

— Perception time (prompt grounding + detection & segmentation),
— Reconstruction time (via MCC model inference),

— Grasp Detection time (GPD),

— Planning time (MTC task generation and solving),

— Execution time (arm movement including pre- and post-grasp phases).
This metric reflects the system’s real-time applicability under com-
putational constraints, especially given the decision to run most (all)
modules on CPU.

* Planning time (RQ3 —Modular Planning Robustness): Refers specifically
to the duration required by Movelt Task Constructor (MTC) to compute fea-
sible motion plans for both the approach and post-grasp tasks. It quantifies
the pipeline’s ability to produce viable plans under physical and kinematic
constraints, serving as a proxy for planning robustness and fallback effec-
tiveness.

Beyond the primary metrics, qualitative observations were made to under-

stand the effects of contextual and environmental variables:

* Prompt Specificity: As noted in Section 4.1, prompt variability (e.g., “blue
mug” vs. “the object on the right”) was tracked to observe the impact of
linguistic specificity on detection accuracy.

* Object Pose and Scene Complexity: Trials were designed to include stand-
ing, lying, and partially occluded objects. Failures were frequently asso-
ciated with low-profile objects (e.g., small ball, joystick) due to collision
risks or failed grasp pose detection.

79

4.3. RESULTS

¢ Error Propagation Chains: Failure in early modules—such as poor seg-
mentation or misaligned depth information—was observed to cascade down-
stream, degrading reconstruction accuracy and resulting in invalid or un-
reachable grasp candidates. This emphasized the importance of input
quality and the value of stateless, retry-capable BT nodes.

Two execution environments were considered:

1. CPU-only Deployment: Reflective of real-world robotic deployments. Pipeline
execution times ranged from ~50s to 1 minute per grasp, dominated by
perception and reconstruction stages.

2. GPU-accelerated Inference (Desktop Testing): Used to benchmark upper-
bound responsiveness. Pipeline execution was consistently under ~12-17
seconds, with perceptual modules completing in ~3-5 seconds, sa evi-
denced in 4.1.

Each object was tested with 5-10 trials, using varied prompts. Scenes were
not scripted, allowing random placement and natural occlusion. Moreover, the

trials were considered binary success/failure, without intermediary scoring.

While the scope of the experiments does not support formal statistical test-
ing, consistent trends across object classes and scenes provide qualitative insight
into the system’s performance, reported in Section 4.3. These observations en-
able qualitative yet structured insights into GAM’s functional behaviour across
varying task conditions.

RESULTS

GRASP SUCCESS RATE

The GAM pipeline was evaluated across two environments—simulation and
real-world deployment—on a set of diverse objects varying in geometry, size,
and texture. Each trial was considered a binary success or failure based on
whether the robot returned to its home configuration while retaining the object
securely in the gripper. The results of the trials are summarized in Figs.4.2-4.3,

regarding the real-world and simulation environment, respectively.

OBSERVATIONS

High-performing objects include the tall cylinder, water bottle, and standard
geometries (e.g., mug, shampoo bottle). These items had clean shapes and clear

80

CHAPTER 4. RESULTS

Grasp Success Rate - Simulation

Grasp Success Rate (%)

Object

Figure 4.2: Simulation Grasp Success Rates.

Grasp Success Rate - Real World

100

Grasp Success Rate (%)

Object

Figure 4.3: Real-world Grasp Success Rates.

81

4.3. RESULTS

point clouds, aligning well with the grasp detection and motion planning logic.

The failures clustered around three main issues:

1. Low-profile shapes (e.g., pear, joystick), which led to collision-prone grasp
planning or unstable grasping pose configurations.

2. Poor segmentation in ambiguous scenes, especially when objects were oc-
cluded and/or visually similar.

3. Short objects near the table surface caused the MTC to reject planned tra-
jectories due to expected collisions. This was particularly visible in small
cylinder, ball and joystick trials, as shown in Fig.4.3.

The system successfully demonstrated zero-shot generalization across a wide
set of object categories without requiring object-specific tuning or retraining.
Prompts such as “blue mug” or “the mug on the right” were parsed and executed
without prior object labels, underscoring the effectiveness of the prompt-grounded

segmentation module and its capacity to detect unseen object classes (RQ1).

While the total number of trials per object remains limited, the consistency of
results across conditions highlights the modular reliability of GAM and its abil-
ity to generalize. Future work should include statistically rigorous experiments

on cluttered scenes and larger trial volumes to formalize these findings.

PIPELINE RUNTIME BREAKDOWN

Although the Grasp-Anything Model (GAM) was designed with an empha-
sis on modularity and runtime feasibility, empirical testing revealed that real-
time performance remains a significant challenge on integrated pipelines. This
section addresses RQ2 (runtime feasibility) and RQ3 (planning responsiveness)
by providing an estimated breakdown of pipeline latency across its key stages,
measured during integrated system runs. Runtime estimates, depicted in Table
7, were derived from repeated trials using both CPU-only and GPU-accelerated
configurations, with each component invoked as part of a single ROS2 action

flow.

OBSERVATIONS

The perception and reconstruction stages, as evidenced in Table 4.1, together
account for over 70% of the total runtime on CPU. These stages rely on deep

82

CHAPTER 4. RESULTS

Pipeline Stage Estimated Runtime (CPU) Estimated Runtime (GPU)

Perception ~ 27s ~ 4s
3D Reconstruction ~ 12s ~ 3s
Grasp Detection ~1-2s <~ 1s
Motion Planning ~ 2-bs ~ 1s
Motion Execution ~ 5-8s ~ 5-8s
Total ~50-60s ~12-17s

Table 4.1: Pipeline Runtime Breakdown on CPU and GPU

learning inference without GPU acceleration, highlighting a fundamental trade-
off between model expressiveness and deployment feasibility on embedded sys-
tem. When run locally on a GPU-equipped machine (for benchmarking pur-
poses), the total end-to-end time was reduced by more than 4x. With perception
running in ~4 seconds and subsequent stages completing near-instantaneously,
this demonstrates that GAM is capable of near real-time responsiveness — but

only under hardware conditions not typical of real robotic platforms.

The adoption of Movelt Task Constructor (MTC) proved highly effective in
reducing planning overhead. Unlike traditional ROS2 action pipelines—which
typically require multiple sequential action goals (e.g., open gripper, move arm,
compute IK, etc.)—MTC handles multi-stage planning as a single structured
problem. This results in more consistent runtimes and fewer execution fail-

ures, especially in geometrically constrained scenes, addressing RQ3.

One of the core goals of this thesis was to design a grasping system that could
operate in real time. The final outcome, however, reflects a common tension in
robotics research: integrating high-capacity perception models with resource-
limited hardware introduces performance ceilings that cannot be trivially solved
without hardware upgrades or algorithmic simplification. While a grasp every
50-60 seconds may seem slow, it is the product of integrating sate-of-the-art
generalist models—such as Grounding-DINO, SAM, and MCC—into a modu-
lar pipeline that remains explainable, interpretable, and reusable. The latency
trade-off becomes a conscious design decision: by prioritizing generalization
and modular validation over brute-force optimization, GAM preserves scientific

transparency and architectural flexibility.

83

4.4. LIMITATIONS

The GAM pipeline does not yet meet the strict thresholds of real-time grasping
(<5s end-to-end), particularly under CPU-only constraints. However, its modu-
lar architecture enables fine-grained profiling and targeted optimization of each
stage. Future work, addressed in Section 5.2, could explore lightweight model
distillation, ONNX implementation, or early-exit mechanisms to reduce latency.
Nonetheless, the current results validate GAM’s feasibility on real hardware
and affirm its value as a foundational framework for scalable, perception-driven

grasping in robotics.

LIMITATIONS

While the Grasp-Anything Model (GAM) demonstrates promising results in
both simulated and real-world environments, several limitations emerged dur-
ing development and evaluation. These limitations reflect both hardware con-
straints and algorithmic trade-offs inherent to the system’s modular architec-

ture.

A primary limitation concerns the quality and reliability of the depth data pro-
vided by the Orbbec Astra RGB-D sensor. During experiments, fluctuations in
the returned point clouds were observed across repeated frames, a phenomenon
informally described as “blinking point clouds”, visible in Fig. 1.3 where the
small football’s depth points are not present in the cloud. These inconsistencies
introduced incomplete or noisy geometric reconstructions, particularly in scenes
with reflective or texture-less surfaces, to mitigate this, the cloudFillsMask ()
utility function is implemented as highlighted in Code 3.7. Moreover, the sensor
struggled to collect depth data when objects were positioned either too close to
the lens—resulting in segmentation without 3D geometry—or too far from the
robot, such as outside the robot’s workspace (e.g., when placed near the floor
with the torso fully extended). In such cases, the reconstruction algorithm pro-
duced coarse approximations of object shape, leading to degraded grasp detec-

tion and motion planning outcomes.

Another critical limitation emerged from the linguistic interface used to drive
the system. The grounding module, based on Grounded -SAM (introduced in
Section 2.2.4), proved effective for common prompts like “blue mug” or “the

object on the right.” However, more linguistically complex or spatially am-

84

CHAPTER 4. RESULTS

biguous prompts, such as those involving positional descriptions or unfamiliar
object names, often failed to produce reliable detections. Similarly, very small
objects—typically under two to three centimeters in size—were frequently over-
looked by the perception module, highlighting a floor in the detectable object
scale. Conversely, larger or more distant objects often required finer point cloud
resolution (granularity) to be accurately reconstructed, which in turn increased

inference latency—a clear trade-off between precision and computational cost.

Challenges were also encountered in the grasp planning and execution stages.
In particular, low-profile objects resting close to the table surface—such as small
balls or joysticks—led to two recurring failure modes. First, the Grasp Pose De-
tection (GPD) module occasionally proposed grasp poses from underneath the
object, which either resulted in collisions with the table or planning failures.
Second, the close proximity to the table introduced difficulties for the motion
planner in computing feasible, collision-free trajectories. Although some miti-
gation was achieved by including contextual point cloud data from nearby sur-
faces (e.g., the points within a radius ‘t" from object’s centroid), this reduced
the selectivity of the grasp detection process, occasionally causing the system to

confuse overlapping objects.

From a systems perspective, the pipeline’s modular structure—while benefi-
cial for transparency and debugging—introduced potential for error propaga-
tion. A failure in one module, such as inaccurate segmentation, could not be
corrected downstream, ultimately leading to task failure. While the use of Be-
havior Trees allowed for basic fallback and retry strategies, recovery from major
errors still required restarting the pipeline, leaving margin of improvements as
stated in Section 5.2.

Finally, the question of real-time feasibility remains a central limitation. De-
spite being designed for CPU-only deployment, the complete grasping cycle re-
quired ~50-60 seconds to complete under real-world conditions. While GPU-
accelerated benchmarks demonstrated that near real-time responsiveness (e.g.,
~12-15s) was achievable under ideal conditions, these scenarios do not reflect
the constraints of typical robotic hardware. Furthermore, the number of real-
world trials conducted during this study was constrained by limited hardware

access, reducing the statistical confidence of the observed results and limiting

85

4.5. SUMMARY OF FINDINGS
generalization.

Together, these limitations highlight the practical challenges of integrating
high-capacity vision and planning modules into a general-purpose, interpretable
pipeline for robotic manipulation. They also emphasize the importance of con-
sidering sensor limitations, linguistic generalization, and system latency in the

design of real-world grasping systems.

SUMMARY OF FINDINGS

The evaluation of the Grasp-Anything Model (GAM) revealed a distinct bal-
ance between generalization, modular reliability, and operational feasibility. Across
both simulated and real-world deployments, GAM demonstrated the ability to
interpret natural language prompts, identify and segment target objects, recon-
struct partial 3D shapes, and execute grasping motions with a measurable de-
gree of success. These capabilities validate the system’s core architectural prin-
ciples: modularity, generalizability, and explainability.

With respect to grasp success rate, GAM achieved robust performance across
a variety of object geometries, including cylindrical, box-shaped, and household
items, with success rates reaching up to ~80-90% in favourable conditions. Im-
portantly, the system generalized to novel, unlabelled objects without explicit
training, confirming the viability of its prompt-driven perception and recon-
struction modules (RQ1). However, low-profile and occluded objects consis-
tently challenged the grasp planner, often triggering planning failures or unsta-
ble grasps. These observations underscore the pipeline’s capacity to generalize
across task domains, while also identifying geometric and perceptual edge cases

that require further refinement.

In terms of runtime feasibility, the system’s end-to-end latency on CPU plat-
forms (~50-60 seconds) fell short of real-time grasping standards. The major-
ity of this delay stemmed from the perception and reconstruction stages, where
deep models such as Grounded-SAM and MCC were executed without GPU ac-
celeration. Benchmarking on GPU reduced the total pipeline time to under
20 seconds, illustrating the architecture’s potential for responsiveness in less
resource-constrained deployments (RQ2). Additionally, the adoption of the Movelt

86

CHAPTER 4. RESULTS

Task Constructor (MTC) resulted in efficient motion planning even in geometri-
cally constrained scenes, validating the use of structured, task-level planning
modules (RQ3).

The results also highlighted the importance of system-level integration and
the cumulative effect of upstream failures on overall performance. For instance,
segmentation inaccuracies or poor point cloud acquisition due to sensor lim-
itations consistently degraded downstream reconstruction and grasp predic-
tion. The use of BTs mitigated some of these cascading failures, but recovery
remained partial, and the need for more adaptive fallback mechanisms was ev-

ident.

In summary, the GAM pipeline succeeded in demonstrating a modular and
interpretable grasping system that performs well across a range of unstructured
scenarios, despite not yet achieving full real-time deployment or high-volume
statistical validation. The findings presented in this chapter reinforce the feasi-
bility of GAM as a general-purpose, CPU-deployable grasping framework and
provide a concrete basis for future optimization efforts in both algorithmic and

hardware domains.

The next and final chapter draws from these empirical insights to critically
reflect on the contributions of this work, identify its broader implications, and
propose future directions that can elevate GAM from a proof-of-concept into a
deployable, scalable grasping system.

87

Conclusions

OVERVIEW

This final chapter concludes the thesis by reflecting on the broader impli-
cations of the work and outlining directions for future development. GAM'’s
greatest contribution is its rejection of monolithic design. By decoupling per-
ception (GSAM), reconstruction (MCC), and planning (MTC), it creates a ‘plug-
and-research’ architecture where individual failures can be diagnosed and re-
placed without systemic collapse. The Grasp-Anything Model was introduced
as a foundational ROS2 grasping pipeline, designed not to outperform all al-
ternatives, but to provide a modular, interpretable, and deployable framework
for vision-based manipulation in realistic robotic settings. Building upon this
system-level contribution, the following sections present prospective enhance-
ments that could extend GAM’s capabilities, improve runtime feasibility, and

increase robustness in real-world applications.

FuTurRE WORK

While the GAM successfully integrates several state-of-the-art components
into a modular grasping pipeline, its current implementation leaves significant
room for functional, architectural, and runtime refinement. The modular na-
ture of GAM is not only a strength in its current form, but also an enabler of ex-
tensibility—allowing researchers to build upon this foundation without rigid

89

5.2. FUTURE WORK

design constraints. Several avenues for future work are outlined below.

SYSTEM OPTIMIZATION AND RUNTIME EFFICIENCY

Reducing the end-to-end execution time remains one of the most critical chal-
lenges for GAM. Future work could focus on the integration of lightweight in-
ference engines such as ONNX Runtime [10], which enables accelerated model
execution on CPU by converting deep learning models (e.g., MCC, Grounded-
SAM) into a highly optimized graph format. Pre- and post-processing steps
across modules can also be revisited to eliminate bottlenecks and redundant

operations, offering further gains in latency without compromising modularity.

BEHAVIOUR TREE EXTENSION AND AUTONOMY

While BTs currently orchestrate module sequencing, their complexity can be
significantly increased to support fallback strategies, dynamic replanning, and
conditional recovery. For example, in cases where the object lies outside the ma-
nipulator’s workspace, navigation behaviour could be integrated to let the robot
reposition accordingly before initiating the grasp (e.g., placing itself in front of
the table). Similarly, failed detection or planning attempts could trigger context-
aware retries rather than full-pipeline resets. These capabilities would enhance

GAM'’s autonomy and its resilience to unpredictable deployment scenarios.

FEEDBACK-DRIVEN GRASP EXECUTION

At present, grasp execution is divided into three independent phases—approach,
close, and retreat—without reactive grasp feedback between them. Introduc-
ing grasp-success feedback from the end-effector (e.g., using force sensing or
finger-position verification) would enable execution to become more fluid and
adaptive, incorporating the whole motion in a single MTC Task. This would al-
low the planner to merge these stages into a single closed-loop action, enhancing
safety, execution speed, and overall grasp reliability.

MoDEL FLEXIBILITY AND MODULE SWAPPING

One of GAM’s key affordances is its agnosticism to specific perception or plan-

ning models. Future research could explore swapping out or benchmarking

90

CHAPTER 5. CONCLUSIONS

alternative architectures, such as replacing GSAM or MCC with faster percep-
tion or reconstruction methods or evaluating transformer-based grasp synthe-
sis models. This not only encourages research reuse but also allows for rapid

prototyping without re-engineering the entire pipeline.

ROBUSTNESS AND GENERALIZATION

Although GAM performs reliably across many object types, its robustness
under adverse conditions (e.g., extreme occlusion, reflective surfaces, or low-
texture objects) remains limited. Future efforts should include domain adap-
tation strategies, uncertainty-aware planning, and sensor fusion approaches to
improve GAM’s resilience. Additional work could also explore prompt diversi-
fication and language grounding improvements, enabling the system to handle

more abstract or spatially rich commands.

EXTENDED FUNCTIONAL SCOPE

Currently, GAM is restricted to single-object grasping in static scenes. Future
work could extend its capabilities toward multi-object reasoning, sequential
manipulation (e.g., pick-and-place chains), or interaction-based tasks such as
tool use or human-robot handovers. Thanks to its modular foundation, these
extensions can be layered incrementally, each becoming a new research oppor-
tunity without disrupting the pipeline’s existing structure.

FINAL REMARKS

This thesis set out not to deliver a one-size-fits-all grasping solution, but to de-
fine a reusable, interpretable, and real-world grounded framework for robotic
manipulation. GAM—the Grasp-Anything Model—represents a shift from opaque,
monolithic pipelines toward modular, diagnosable systems. Each of its compo-
nents, from prompt-driven perception to single-view reconstruction and task-
aware motion planning, contributes to a broader design philosophy: modularity
not as convenience, but as necessity for scalable, transparent, and trustworthy
robotic systems.

Whatbegan as an attempt to integrate cutting-edge vision models into a ROS2-
based pipeline quickly evolved into a deeper exercise in engineering discipline.

91

5.3. FINAL REMARKS

The real-world constraints of limited hardware, noisy sensors, and stiff integra-
tion logic forced repeated rethinking of what “feasible” really means in robotics.
GAM taught me the value of robust systems over flashy benchmarks, and that
design elegance often lies not in sophistication but in clarity, recoverability, and

adaptability.

From debugging a misaligned depth stream to testing zero-shot object detec-
tion with vague prompts, each technical challenge uncovered a deeper truth:
in robotics, success is rarely about any one model or algorithm. It is about the
ability to fail locally, recover modularly, and scale systematically. GAM is not
a finished product—it is a foundation. A proof-of-concept for what a general-
purpose, ROS2-native grasping pipeline can look like when designed with both

experimentation and deployment in mind.

In building GAM, I did not just write code—I learned how to think like a sys-
tems robotic software engineer. I came to appreciate trade-offs between speed
and interpretability, performance and portability, complexity and maintainabil-
ity. This project gave me the opportunity to work at the edge of current research
while staying rooted in the practical realities of deploying on a real robot in an
industrial setting. The lessons are not only technical but deeply methodolog-
ical: validate often, isolate faults, and build systems that invite change rather
than resist it.

Looking forward, GAM offers a platform for continued exploration. Its modu-
lar structure welcomes new models, improved behaviour logic, and tighter feed-
back integration. It is an invitation—not a conclusion—for the next generation
of roboticists to build systems that are not only smart, but understandable, re-

pairable, and real-world ready.

In that sense, the GAM pipeline is not an end—it is a beginning.

92

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Aishwarya Agrawal et al. VQA: Visual Question Answering. 2016. arXiv:
1505.00468 [cs.CL]. URL: https://arxiv.org/abs/1505.00468.

Matthew Berger et al. “A Survey of Surface Reconstruction from Point
Clouds”. In: Computer Graphics Forum 35.2 (2016), pp. 301-329. por: 10 .
1111/cgf . 12802. URL: https://doi.org/10.1111/cgf . 12802.

Anthony Brohan et al. RT-2: Vision-Language-Action Models Transfer Web
Knowledge to Robotic Control. 2023. arXiv: 2307.15818 [cs.RO]. URL: https:
//arxiv.org/abs/2307.15818.

Angel X. Chang et al. ShapeNet: An Information-Rich 3D Model Repository.
2015. arXiv: 1512.03012 [cs.GR]. URL: https://arxiv.org/abs/1512.
03012.

XiChenetal. PaLI: A Jointly-Scaled Multilingual Language-Image Model. 2023.
arXiv: 2209.06794 [cs.CV]. URL: https://arxiv.org/abs/2209.06794.

Yuhao Chen et al. “MetaGraspNet: a large-scale benchmark dataset for
vision-driven robotic grasping via physics-based metaverse synthesis”. In:
arXiv preprint arXiv:2112.14663 (2021).

Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. “Per-Pixel
Classification is Not All You Need for Semantic Segmentation”. In: 2021.

Angela Dai et al. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes.
2017. arXiv: 1702 . 04405 [cs.CV]. URL: https://arxiv.org/abs/1702.
04405.

Amaury Depierre, Emmanuel Dellandréa, and Liming Chen. Jacquard: A
Large Scale Dataset for Robotic Grasp Detection. 2018. arXiv: 1803 . 11469
[cs.ROJ. URL: https://arxiv.org/abs/1803.11469.

93

https://arxiv.org/abs/1505.00468
https://arxiv.org/abs/1505.00468
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/2209.06794
https://arxiv.org/abs/2209.06794
https://arxiv.org/abs/1702.04405
https://arxiv.org/abs/1702.04405
https://arxiv.org/abs/1702.04405
https://arxiv.org/abs/1803.11469
https://arxiv.org/abs/1803.11469
https://arxiv.org/abs/1803.11469

REFERENCES

[10]

[11]

[14]

[17]

[18]

[19]

ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/.
Version: x.y.z. 2021.

Clemens Eppner, Arsalan Mousavian, and Dieter Fox. “ACRONYM: A
Large-Scale Grasp Dataset Based on Simulation”. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 2021, pp. 9560—
9568. por: 10.1109/ICRA48506.2021.9560844. URL: https://doi.org/10.
1109/ICRA48506.2021.9560844.

Davide Faconti. BehaviorTree.dev: A platform for Behavior Trees. Accessed:
2025-05-21. 2024. urL: https://www.behaviortree.dev/.

Hao-Shu Fang et al. “AnyGrasp: Robust and Efficient Grasp Perception in
Spatial and Temporal Domains”. In: IEEE Transactions on Robotics (T-RO)
(2023).

Hao-Shu Fang et al. “GraspNet-1Billion: A Large-Scale Benchmark for Gen-
eral Object Grasping”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition(CVPR). 2020, pp. 11444-11453.

Hao-Shu Fang et al. “Robust grasping across diverse sensor qualities: The
GraspNet-1Billion dataset”. In: The International Journal of Robotics Research
(2023).

Christelle Ferrari and John Canny. “Planning Optimal Grasps”. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation. 1992,
pp- 2290-2295.

Brian Flynn et al. Developing Modular Grasping and Manipulation Pipeline
Infrastructure to Streamline Performance Benchmarking. 2025. arXiv: 2504 .
06819 [cs.RO]. URL: https://arxiv.org/abs/2504.06819.

Michael* Gorner et al. “Movelt! Task Constructor for Task-Level Motion
Planning”. In: IEEE International Conference on Robotics and Automation (ICRA).
20109.

Thibault Groueix et al. AtlasNet: A Papier-Maché Approach to Learning 3D
Surface Generation. 2018. arXiv: 1802.05384 [cs.CV]. URL: https://arxiv.
org/abs/1802.05384.

Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A Dataset for Large
Vocabulary Instance Segmentation. 2019. arXiv: 1908 . 03195 [cs.CV]. URL:
https://arxiv.org/abs/1908.03195.

94

https://onnxruntime.ai/
https://doi.org/10.1109/ICRA48506.2021.9560844
https://doi.org/10.1109/ICRA48506.2021.9560844
https://doi.org/10.1109/ICRA48506.2021.9560844
https://www.behaviortree.dev/
https://arxiv.org/abs/2504.06819
https://arxiv.org/abs/2504.06819
https://arxiv.org/abs/2504.06819
https://arxiv.org/abs/1802.05384
https://arxiv.org/abs/1802.05384
https://arxiv.org/abs/1802.05384
https://arxiv.org/abs/1908.03195
https://arxiv.org/abs/1908.03195

REFERENCES

[21] Zixuan Huang et al. “PointInfinity: Resolution-Invariant Point Diffusion
Models”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2024.

[22] Shun Iwase et al. ZeroGrasp: Zero-Shot Shape Reconstruction Enabled Robotic
Grasping. 2025. arXiv: 2504 .10857 [cs.RO]. URL: https://arxiv.org/abs/
2504.10857.

[23] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for
motion planning”. In: 2011 IEEE International Conference on Robotics and
Automation. 2011, pp. 4569-4574. por: 10.1109/ICRA.2011.5980280.

[24] Dmitry Kalashnikov et al. QT-Opt: Scalable Deep Reinforcement Learning for
Vision-Based Robotic Manipulation. 2018. arXiv: 1806 . 10293 [cs.LG]. URL:
https://arxiv.org/abs/1806.10293.

[25] David Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging Big Data
for Grasp Planning”. In: Autonomous Robots 42.1 (2018), pp. 1-20. por: 10.
1007/s10514-017-9646-9. URL: https://doi.org/10.1007/510514-017-
9646-9.

[26] L.E.Kavrakietal. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE Transactions on Robotics and Automation 12.4
(1996), pp. 566-580. por: 10.1109/70.508439.

[27] Alexander Kirillov et al. “Segment Anything”. In: arXiv:2304.02643 (2023).

[28] Kevin Kleeberger, Reiner Bormann, Wolfgang Kraus, et al. “A Survey on
Learning-Based Robotic Grasping”. In: Current Robotics Reports 1 (2020),
pp- 239-249. por: 10.1007/s43154-020-00021-6. URL: https://doi.org/
10.1007/s43154-020-00021-6.

[29] AnnaKonrad, John McDonald, and Rudi Villing. GP-net: Flexible Viewpoint
Grasp Proposal. 2023. arXiv: 2209 . 10404 [cs.RO]. URL: https://arxiv.
org/abs/2209.10404.

[30] Anna Konrad, John McDonald, and Rudi Villing. “VGQ-CNN: Moving
Beyond Fixed Cameras and Top-Grasps for Grasp Quality Prediction”. In:
2022 International Joint Conference on Neural Networks (IJCNN). IEEE, July
2022, pp. 1-8. por: 10.1109/1jcnnb5064 .2022.9892763. URL: http://dx.
doi.org/10.1109/IJCNN55064.2022.9892763.

[31] kyouma9s. ycb_gazebo_sdf: YCB models for Gazebo (.sdf). https://github.
com/kyouma9s/ycb_gazebo_sdf. Accessed: 2025-05-20.

95

https://arxiv.org/abs/2504.10857
https://arxiv.org/abs/2504.10857
https://arxiv.org/abs/2504.10857
https://doi.org/10.1109/ICRA.2011.5980280
https://arxiv.org/abs/1806.10293
https://arxiv.org/abs/1806.10293
https://doi.org/10.1007/s10514-017-9646-9
https://doi.org/10.1007/s10514-017-9646-9
https://doi.org/10.1007/s10514-017-9646-9
https://doi.org/10.1007/s10514-017-9646-9
https://doi.org/10.1109/70.508439
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1007/s43154-020-00021-6
https://arxiv.org/abs/2209.10404
https://arxiv.org/abs/2209.10404
https://arxiv.org/abs/2209.10404
https://doi.org/10.1109/ijcnn55064.2022.9892763
http://dx.doi.org/10.1109/IJCNN55064.2022.9892763
http://dx.doi.org/10.1109/IJCNN55064.2022.9892763
https://github.com/kyouma9s/ycb_gazebo_sdf
https://github.com/kyouma9s/ycb_gazebo_sdf

REFERENCES

[32] Zhiqgian Lan et al. “SEPT: Towards Efficient Scene Representation Learn-
ing for Motion Prediction”. In: The Twelfth International Conference on Learn-
ing Representations. 2024. URL: https : / / openreview . net / forum? id =
efeBC1sQj9.

[33] Shilong Liu et al. “Grounding dino: Marrying dino with grounded pre-
training for open-set object detection”. In: arXiv preprint arXiv:2303.05499
(2023).

[34] Jeffrey Mahler et al. “Dex-Net 2.0: Deep Learning to Plan Robust Grasps
with Synthetic Point Clouds and Analytic Grasp Metrics”. In: https://berkeleyautomation.gt
net/code.html?highlight=cite (2017).

[35] BenMildenhall etal. “NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis”. In: ECCV. 2020.

[36] Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis. 2020. arXiv: 2003 . 08934 [cs.CV]. URL: https://arxiv.
org/abs/2003.08934.

[37] A.T.Miller and P.K. Allen. “Graspit! A versatile simulator for robotic grasp-
ing”. In: IEEE Robotics & Automation Magazine 11.4 (2004), pp. 110-122. por:
10.1109/MRA.2004.1371616.

[38] Chaerin Min et al. TSDF-Sampling: Efficient Sampling for Neural Surface Field
using Truncated Signed Distance Field. 2023. arXiv: 2311.17878 [cs.CV]. URL:
https://arxiv.org/abs/2311.17878.

[39] Douglas Morrison, Peter Corke, and Jiirgen Leitner. EGAD! an Evolved
Grasping Analysis Dataset for diversity and reproducibility in robotic manip-
ulation. 2020. arXiv: 2003.01314 [cs.R0O]. URL: https://arxiv.org/abs/
2003.01314.

[40] Douglas Morrison, Peter Corke, and Jiirgen Leitner. “Learning Robust,
Real-Time, Reactive Robotic Grasping”. In: The International Journal of Robotics
Research 39.2-3 (2019), pp. 183-201. por: 10.1177/0278364919859066. URL:
https://doi.org/10.1177/0278364919859066.

[41] Van Thanh Nguyen. “Constructing Force-Closure Grasps”. In: Proceedings
of the IEEE International Conference on Robotics and Automation. 1989, pp. 694—
699.

96

https://openreview.net/forum?id=efeBC1sQj9
https://openreview.net/forum?id=efeBC1sQj9
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://doi.org/10.1109/MRA.2004.1371616
https://arxiv.org/abs/2311.17878
https://arxiv.org/abs/2311.17878
https://arxiv.org/abs/2003.01314
https://arxiv.org/abs/2003.01314
https://arxiv.org/abs/2003.01314
https://doi.org/10.1177/0278364919859066
https://doi.org/10.1177/0278364919859066

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

REFERENCES

Alex Nichol et al. Point-E: A System for Generating 3D Point Clouds from Com-
plex Prompts. 2022. arXiv: 2212.08751 [cs.CV]. URL: https://arxiv.org/
abs/2212.08751.

Orbbec. Astra Series Structured-Light Camera. https: //www . orbbec . com/

products/structured-light-camera/astra-series/. Accessed: 2025-
05-20.

Alessandro Palleschi et al. “Grasp It Like a Pro 2.0: A Data-Driven Ap-
proach Exploiting Basic Shape Decomposition and Human Data for Grasp-
ing Unknown Objects”. In: IEEE Transactions on Robotics 39.5 (2023), pp. 4016—
4036. por: 10.1109/TR0O.2023.3286115.

Jeong Joon Park et al. “DeepSDEF: Learning Continuous Signed Distance
Functions for Shape Representation”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2019.

Andreas ten Pas et al. Grasp Pose Detection in Point Clouds. 2017. arXiv:
1706.09911 [cs.RO]. URL: https://arxiv.org/abs/1706.09911.

PickNik Robotics. Movelt Task Constructor Tutorial. https://moveit.picknik.
ai/humble/doc/examples/moveit task_constructor/moveit _task _

constructor_tutorial.html. Accessed: 2025-05-20.

Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP
Latents. 2022. arXiv: 2204 .06125 [cs.CV]. URL: https://arxiv.org/abs/
2204 .06125.

Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for effi-
cient motion planning”. In: 2009 IEEE International Conference on Robotics
and Automation. 2009, pp. 489-494. por: 10.1109/R0BOT.2009.5152817.

Nikhila Ravi et al. “SAM 2: Segment Anything in Images and Videos”.
In: arXiv preprint arXiv:2408.00714 (2024). URL: https://arxiv.org/abs/
2408.00714.

Jeremy Reizenstein et al. Common Objects in 3D: Large-Scale Learning and
Evaluation of Real-life 3D Category Reconstruction. 2021. arXiv: 2109. 00512
[cs.CV]. URL: https://arxiv.org/abs/2109.00512.

Tianhe Ren et al. Grounded SAM: Assembling Open-World Models for Diverse
Visual Tasks. 2024. arXiv: 2401.14159 [cs.CV].

97

https://arxiv.org/abs/2212.08751
https://arxiv.org/abs/2212.08751
https://arxiv.org/abs/2212.08751
https://www.orbbec.com/products/structured-light-camera/astra-series/
https://www.orbbec.com/products/structured-light-camera/astra-series/
https://doi.org/10.1109/TRO.2023.3286115
https://arxiv.org/abs/1706.09911
https://arxiv.org/abs/1706.09911
https://moveit.picknik.ai/humble/doc/examples/moveit_task_constructor/moveit_task_constructor_tutorial.html
https://moveit.picknik.ai/humble/doc/examples/moveit_task_constructor/moveit_task_constructor_tutorial.html
https://moveit.picknik.ai/humble/doc/examples/moveit_task_constructor/moveit_task_constructor_tutorial.html
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://doi.org/10.1109/ROBOT.2009.5152817
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2109.00512
https://arxiv.org/abs/2109.00512
https://arxiv.org/abs/2109.00512
https://arxiv.org/abs/2401.14159

REFERENCES

[53] Mauricio A. Roa and Ricardo Sudrez. “Grasp Quality Measures: Review
and Performance”. In: Autonomous Robots 38 (2015), pp. 65-88. por: 10 .
1007/s10514-014-9402-3. URL: https://doi.org/10.1007/s10514-014~
9402-3.

[54] Mike Roberts et al. Hypersim: A Photorealistic Synthetic Dataset for Holistic
Indoor Scene Understanding. 2021. arXiv: 2011.02523 [cs.CV]. URL: https:
//arxiv.org/abs/2011.02523.

[55] Ashutosh Saxena, Joel Driemeyer, and Andrew Y. Ng. “Robotic Grasp-
ing of Novel Objects Using Vision”. In: The International Journal of Robotics
Research 27.2 (2008), pp. 157-173. por: 10 . 1177 /0278364908097119. URL:
https://doi.org/10.1177/0278364908097119.

[56] Johannes Lutz Schonberger and Jan-Michael Frahm. “Structure-from-Motion
Revisited”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2016.

[57] Johannes Lutz Schonberger et al. “Pixelwise View Selection for Unstruc-
tured Multi-View Stereo”. In: European Conference on Computer Vision (ECCV).
2016.

[58] sea-bass. ycb-tools: Utilities for YCB object models. https : //github . com/
sea-bass/ycb-tools. Accessed: 2025-05-20.

[59] Halperin D. Solovey K Salzman O. “Finding a needle in an exponential
haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot
motion planning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No.OOCH37065). Vol. 35. 2016. por: 10.1177/0278364915615688.

[60] Ioan A.Sucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Plan-
ning Library”. In: IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72—
82.por1: 10.1109/MRA.2012.2205651.

[61] Martin Sundermeyer et al. “Contact-GraspNet: Efficient 6-DoF Grasp Gen-
eration in Cluttered Scenes”. In: (2021).

[62] Ao Wangetal. YOLOE: Real-Time Seeing Anything. 2025. arXiv: 2503.07465
[cs.CV]. URL: https://arxiv.org/abs/2503.07465.

[63] Chao-Yuan Wu et al. “Multiview Compressive Coding for 3D Reconstruc-
tion”. In: arXiv preprint arXiv:2301.08247 (2023).

98

https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1007/s10514-014-9402-3
https://doi.org/10.1007/s10514-014-9402-3
https://arxiv.org/abs/2011.02523
https://arxiv.org/abs/2011.02523
https://arxiv.org/abs/2011.02523
https://doi.org/10.1177/0278364908097119
https://doi.org/10.1177/0278364908097119
https://github.com/sea-bass/ycb-tools
https://github.com/sea-bass/ycb-tools
https://doi.org/10.1177/0278364915615688
https://doi.org/10.1109/MRA.2012.2205651
https://arxiv.org/abs/2503.07465
https://arxiv.org/abs/2503.07465
https://arxiv.org/abs/2503.07465

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

REFERENCES

Qiangeng Xu et al. “Point-nerf: Point-based neural radiance fields”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2022, pp. 5438-5448.

Daniel Yang et al. Robotic Grasping through Combined Image-Based Grasp Pro-
posal and 3D Reconstruction. 2020. arXiv: 2003.01649 [cs.RO]. URL: https:
//arxiv.org/abs/2003.01649.

Xumin Yu et al. “PoinTr: Diverse Point Cloud Completion with Geometry-
Aware Transformers”. In: ICCV. 2021.

Nir Zabari and Yedid Hoshen. Semantic Segmentation In-the-Wild Without
Seeing Any Segmentation Examples. 2021. arXiv: 2112.03185 [cs.CV]. URL:
https://arxiv.org/abs/2112.03185.

Hanbo Zhang et al. Robotic Grasping from Classical to Modern: A Survey.
2022. arXiv: 2202.03631 [cs.R0O]. URL: https://arxiv.org/abs/2202.
03631.

Hao Zhang et al. “A Simple Framework for Open-Vocabulary Segmenta-
tion and Detection”. In: arXiv preprint arXiv:2303.08131 (2023).

Fan Zhu et al. “Failure Handling of Robotic Pick and Place Tasks With
Multimodal Cues Under Partial Object Occlusion”. In: Frontiers in Neuro-
robotics 15 (Feb. 2021), p. 570507. por: 10.3389/fnbot . 2021 .570507. URL:
https://www.frontiersin.org/ journals/neurorobotics/articles/
10.3389/fnbot.2021.570507/full.

Joshua M. Zutell, David C. Conner, and Philipp Schillinger. “ROS 2-Based
Flexible Behavior Engine for Flexible Navigation”. In: SoutheastCon 2022.
2022, pp. 674-681. por1: 10.1109/SoutheastCon48659.2022.9764047.

99

https://arxiv.org/abs/2003.01649
https://arxiv.org/abs/2003.01649
https://arxiv.org/abs/2003.01649
https://arxiv.org/abs/2112.03185
https://arxiv.org/abs/2112.03185
https://arxiv.org/abs/2202.03631
https://arxiv.org/abs/2202.03631
https://arxiv.org/abs/2202.03631
https://doi.org/10.3389/fnbot.2021.570507
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.570507/full
https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.570507/full
https://doi.org/10.1109/SoutheastCon48659.2022.9764047

Acknowledgments

During the course of this Master’s program, I had the opportunity to develop
and implement a complete robotic grasping pipeline, from its architectural de-
sign to its final experimental validation on a real robotic platform. This jour-
ney has been both intellectually demanding and profoundly rewarding, as it re-
quired me to navigate the complexities of modular system integration, perception-
based inference, and real-time robotic execution within the ROS2 ecosystem. Be-
yond the technical scope, this experience has significantly shaped my personal
and professional development. It taught me the importance of perseverance,
attention to detail, and critical thinking when faced with real-world challenges.
More importantly, it allowed me to grow not only as an engineer, but also as
a person. I am sincerely grateful for the opportunity to meet and collaborate
with exceptional individuals, witness cutting-edge research environments first-
hand, and immerse myself in a learning process that extended far beyond the
boundaries of robotics itself.

I would like to express my deepest gratitude to my family: Eleonora, Rosario,
Antonietta, Elvira, Jolanda, Virginia, whose unwavering support has been the foun-
dation of my academic and life journeys. Their constant presence, trust, and be-
lief in my decisions gave me the freedom to choose my own path and pursue
what I truly believed in. They never imposed expectations, but instead empow-
ered me with the confidence to explore, fail, learn, and grow. Their encourage-
ment and generosity, both emotional and practical, have been instrumental in
turning my aspirations into reality. They shape me into who I am and for that I

am deeply thankful.
I'am grateful to my closest friends, Circ, Abba, Cast, PeppeG, Manu, and Sandro,

who have always been an essential part of my life, even when distance or time
separated us. Our bond has never depended on proximity; each time we reunite,

it feels as if not a single day has passed. Their kindness, unwavering presence,

101

REFERENCES

and the purity of their affection continue to remind me of the value of genuine
friendship. I cherish every moment we have shared and look forward to all those
that are yet to come. Their warmth and willingness to welcome me back, to share
time and experiences without hesitation, has been a source of deep comfort and
joy throughout this journey.

I also want to thank the Maronn group, Francesco, Simone, Alessandro, An-
drea, Giulio and Gianluca, along with Ester, Rosalba and Martina. You were the
people I was lucky to meet during my time in Salerno, and together we man-
aged to overcome the boredom of Fisciano, even for a short time, with affection
and some beers that made the journey lighter. Whether it was going out for
drinks, sharing the latest gossip, or choosing cards over books when we should
have been studying, your presence brought genuine joy and balance to these
years. Thank you for honest laughs, unfiltered conversations and for always
being there without needing a reason.

A special thanks goes to my childhood friends, Giuseppe and Federico. Al-
though distance keeps us from meeting often, every time we reconnect it feels
as though no time has passed; we are simply children again. I am grateful for
the kindness you have always shown, for the sincerity of our conversations that
can touch on any aspect of life, and for the way that you are always ready to lis-
ten when it matters most. I appreciate the memories we have built and I deeply
value the loyalty and quiet strength of our friendship.

I also would like to express my heartfelt gratitude to three of the kindest
people I have had the privilege to meet: Amin, Annah, and Navid. Since our
first encounter in Padua, they have welcomed me with warm smiles and acts
of genuine kindness. I am thankful for the time we spent together studying,
sharing meaningful and less meaningful conversations, and enjoying the meals
they so generously prepared. Their presence has always been a source of com-
fort, whether through their support when needed or their willingness to share
a spritz while complaining about something. Time may pass, but their rare and
unwavering kindness remains a constant that I deeply admire.

A special thanks goes to Alberto, my lawyer Marianna, and Silver, my room-
mates, for a brief but unforgettable chapter. Although we shared only two months
together, we managed to create moments that felt like home: from movie nights
and concerts to aperitifs, long walks, and even a memorable trip through South
of Italy. In a time and place where I could have felt displaced, you made me
feel welcomed, supported, and seen. Thank you for always being ready with an

102

REFERENCES

answer, a helping hand, a spare bed, or simply a night out when our paths cross
again. I will always be grateful for the laughter, the fights (avvoca...) and the
wine we shared.

To Gabriel, whose friendship has been a source of joy and lightness since the
very first moment we met: thank you. Your smile, warmth, and easygoing pres-
ence always made it a pleasure to have you around. You not only welcomed
me with your generosity, but also opened your home and, together with your
mother, made me feel truly cared for. Your kindness, honesty, and availabil-
ity, always ready with a thoughtful response or a helping hand, are qualities I
deeply value. I am grateful for your friendship and for the moments we shared.

My deepest thanks also go to the extraordinary group of people I met during
my Erasmus experience in Graz: Adit, Aleksy, Aaron, Annalisa, Virginia, Manos,
Alfonso, Giorgia, Lucas, Tate, Nandi, Nadine, Adam, Océane, and William. Each of
you became part of a vibrant mosaic of memories: Every night out, every trip,
every barbecue, hike, and spontaneous adventure we shared were shaped by
the presence of this beautiful and diverse group. We came from different cor-
ners of the world, each with their own stories and ways of seeing life, and this
incredible mix allowed me to carry home a little piece of each of you. I learned
so much simply by being surrounded by your uniqueness. A special mention
must go to Antonio, Lenche, and Kika, who brought me even closer thanks to our
stupid shared mindset, countless laughs and warm Spanish hospitality. Thank
you for hosting me, showing me around, and being sources of joy, gossip, and
brutally honest but always caring opinions. And finally, to the "Sterialized” team
-Robin, Ma2, and Leo - you are a family. We spent an enormous amount of time
together, enough to build a connection so deep that we could understand each
other without even speaking. Those bonds are rare, and I am grateful to have
experienced that with you. The sheer amount of memories we packed into a
single Erasmus feels infinite. To all of you, thank you for helping me grow, for
letting me enter your cultures and your lives, and for making this period truly
unforgettable.

To the friends I met in Spain:Juan, Carlo, Marco, Mauro-Angel-Maria-Bogota,
Diana and Seb thank you for being part of this journey. Your presence truly made
that time golden. Whether it was crossing the entire city just to meet, heading to
the most unexpected places simply to enjoy what awaited us, or sharing sangria
and spontaneous trips, your company brought warmth, laughter, and mean-

ing to every moment. A special thanks goes to Juan, whose loyalty, kindness,

103

REFERENCES

and good heart never went unnoticed. Our meeting, so random, a month be-
fore I even arrived, now feels like it was meant to happen. Thank you for the
conversations, the laughter, the countless hours spent together, and even the
Call-of- Duty matches. You have been a constant and I am deeply grateful for
your honesty, your understanding and the sincere friendship you have shown
me throughout.

To the people I met at PAL Robotics: David, Thomas P., Thomas T., Oscar, Ile-
nia, Viviana, Aina, Daniel, the Tiago team, thank you for being with me through-
out this journey. What an incredible group of individuals. Brilliant, driven,
and kind: Your collective talent and openness made PAL not only a world-class
robotics environment, but also a place where I felt constantly supported and in-
spired. Despite being surrounded by people with such advanced knowledge,
I never felt out of place; rather, I felt encouraged to grow. Your willingness to
answer questions with patience, care, and honesty helped me do what I did.
I greatly appreciated every aspect of my time at PAL: from the work itself to
lunches, walks to pick up food, breakfast chats, office parties, apple breaks, gos-
sip sessions, football matches, ski trip, hikes and even basketball games at sun-
rise. Each experience was enriched by your presence. My sincere thanks also
go to Isaac, Sergi, Edgar, the interns Victoria and Aroa, and to Lampros, Harsh,
Noel, Andrea C. and Andrea P, each of you contributing meaningfully to this
chapter of my life. Special thanks go to David. You are not only a great engi-
neer, but an incredible leader. The strength and cohesion of the Tiago Team are
a reflection of your calm, thoughtful guidance, and your quiet professionalism.
Your depth of knowledge and the care with which you shared it were fundamen-
tal to this work. GAM would not be what it is without you standing behind it.
You have a rare ability to make everyone feel at ease, checking on people’s well-
being, offering support without asking, and lifting the atmosphere both inside
and outside PAL. For that and much more, I am truly grateful.

The Ancona crew, Andrea, Giulia, Niki, Toti, Stefano, Angi and Leti, thank you
for the warmth and spontaneity with which you welcomed me during my time
traveling in Ancona city. Your constant curiosity, kindness, and openness to ex-
plore made each encounter memorable, from discovering hidden spots to night
walks in search of bioluminescence in Grotta. You made me feel like a true part
of the pace and way of life in Ancona, as if I were one of you, not just a guest.
Thank you for all the experiences, from shared study sessions to spots in ran-
dom wildlife, the laughter, and for letting me be a marine biologist for the time

104

REFERENCES

I am around.

A special thanks goes to Giulia, whom I met in Barcelona and with whom I
shared nearly three months of daily life. Your sincerity, joy, and kindness made
those days lighter. I truly appreciated every conversation and every laugh we
had and every drink we shared, always accompanied by your genuine smile and
good heart.

Last but not least, thank you to Eleonora, Elly. We spent quite a bit of time
togheter, close and far, happy and sad, active and lazy, on vacation and study-
ing, in a city or in another. All these moments with you taught me a lot. I would
not have been as good as I am today if it weren’t for you. Thank you for being
so loving and caring, having this much patience, finding the way to reach me
with your purest of the souls even across the ocean. Your support is unique and
you maybe don’t even know, even if not physically close, your words, sugges-
tions, and spontaneous love are what shaped me. I will manage to make you
understand how much I admire you, your way of seeing life, your willingness
to explore and know the unknown, your way of being and relating to others.
Thank you for being close even when we were apart or when i didn’t deserve
it, for being always spontaneous, for that amazing heartwarming smile and the

care you show me. Can’t wait to start a next chapter with you!

105

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Background
	Context
	Purposes and Objectives
	Significance, Scope and Definitions
	Thesis Outline

	Literature Review
	Historical Background
	Perception for Robotic Grasping
	End-to-end Vision Language Model (RT-2)
	Segment-Anything-Model
	YOLOe
	Grounded-Segment-Anything

	3D Scene Representation
	Point-NeRF
	PointInfinity
	Deep SDF
	MCC

	Grasping Pose Detection
	Grasp it Like a Pro 2.0
	Contact-GraspNet
	AnyGrasp
	GPD

	Trajectory Planning & Control
	MoveIt2 & MTC
	Motion Planning Algorithms

	Limitations of Existing Work

	Research Design and Implementation
	System Architecture & Control Strategy
	Research Desgin and Evaluation Strategy
	Experimental Instruments and Logging
	BT Execution and ROS2 Service Coordination

	Perception
	Perception Module Implementation

	3D Reconstruction
	3D Reconstruction Module Implementation

	Grasping Pose Detection
	Grasping Pose Detection Module Implementation

	Planning Scene Handler
	Planning Scene Hnalder Implementation

	Motion Planning & Execution
	Trajectory Planning & Grasp Execution Implementation

	Summary and Experimental Outlook

	Results
	Experimental Setup
	Evaluation Metrics & Success Criteria
	Results
	Grasp Success Rate
	Pipeline Runtime Breakdown

	Limitations
	Summary of Findings

	Conclusions
	Overview
	Future Work
	Final Remarks

	References
	Acknowledgments

